
“Grassroots ASPLOS”
can we still rethink

the hardware/software interface
in processors?

Raphael ‘kena’ Poss
University of Amsterdam, the Netherlands

ASPLOS-17 Doctoral Workshop
London, March 4th, 2012

1zaterdag 20 oktober 2012

Current on-chip parallelism
is based on legacy

• Historical focus on single-thread performance
(developments in general-purpose processors: registers, branch prediction,
prefetching, out-of-order execution, superscalar issue, trace caches, etc.)

• Legacy heavily biased towards single threads:
• Symptom: interrupts are the only way to signal

asynchronous external events
• Retro-fitting hardware multithreading is difficult

because of the sequential core’s complexity

• What if...
we redesigned general-purpose processors,
assuming concurrency is the norm in software?

2zaterdag 20 oktober 2012

Microgrids
of D-RISC cores

• D-RISC cores:
hardware multithreading +
dynamic dataflow scheduling

• fine-grained threads: 0-cycle
thread switching, <2 cycles
creation overhead

• ISA instructions for thread
management

• dedicated hardware processes
for bulk creation and
synchronization

• No preemption/interrupts;
events create new threads

MEMORY

MEMORY

ACTIVE
MESSAGES

DECODE & REGADDR

RF

ALU

LSU

FETCH & SWITCH

L1D & MCU

ALU
(async)

L1I

WB

TMU &
SCHEDULER

READ & ISSUE

TT & FT NCU

In-order, single-issue RISC: small, cheaper, faster/watt

3zaterdag 20 oktober 2012

A perspective shift

CORE I7

Function call

with 4 registers spilled

30-100 cycles

Predictable loop

requires branch predictor
+ cache prefetching

to maximize utilization

1+ cycles / iteration overhead

D-RISC
WITH TMU

IN HARDWARE

Bulk thread creation

of 1 thread,
31 “fresh” registers

~15 cycles
(7c sync, ~8c async)

Thread family

1 thread / “iteration”
reuses common TMU

and pipeline
no BP nor prefetch needed

0+ iteration overhead

4zaterdag 20 oktober 2012

Example 128-core
Microgrid

• 32000+ hw threads

• 5MB distributed cache

• shared MMU
= single virtual
address space,
protection using
capabilities

• Weak cache coherency

• no support for global
memory atomics –
instead
synchronization using
remote register writes

Root directory

DDR Channel
Root directory

DDR Channel

Root directory

DDR Channel
Root directory

DDR Channel

Off-chip
I/O network

Off-chip
I/O network

Area estimates with CACTI: 100mm2 @ 35nm

Approximate size of one Nehalem (i7) core
for comparison

5zaterdag 20 oktober 2012

Contributions

1. Full-system architecture design + description
uses “companion processor” for legacy OS code
= accelerator model inverted (akin to service nodes in the XMT)

2. GNU C compiler + some C library + some POSIX
(was able to port bits from FreeBSD)

3. SL = new C primitives for declarative concurrency

• cannot use pthreads / nanox / qthreads / C1x
cost(function call for API) >> cost(ISA thread creation)

• declarative = can be run concurrent, may run sequential,
architecture decides based on run-time resource availability

6zaterdag 20 oktober 2012

Results, what’s next?

✓ built enough infrastructure to fit the F/OSS landscape
– yet can’t reuse most existing OS code: no interrupts, no traps

✓ as planned, higher performance per area and per watt
– via hand-coded benchmarks: granularity in SPEC is too coarse

• Follow-up research areas:

• Internal issues: memory consistency, scalable cache
protocols, ISA semantics, etc.

• External issues from outside architecture: how to
virtualize? how to place tasks over so many
“workers”? how to port existing OS code?

• Fundamental issues: concurrent complexity theory?

7zaterdag 20 oktober 2012

Core issues

• Is there still room in our ecosystem
to rethink the fundamentals?

• Assuming so, how to enthuse a
community in this direction? How to
gain traction? How to get funding for
manufacturing?

• Suggestions & comments welcome

8zaterdag 20 oktober 2012

9zaterdag 20 oktober 2012

Extra - Key concepts

• Single-issue, in-order RISC for more performance/watt
• ILP for latency tolerance, concurrency sourced from many in-

order threads per core instead of out-of-order execution of 1
thread

• Dynamic dataflow scheduling over a synchronizing register
file instead of reservation stations / Tomasulo / reorder
buffers

• Avoid speculation as it is energy inefficient; loops and branch
prediction can be replaced by interleaved dependent threads

• Hardware concurrency management: thread creation,
termination, synchronization, communication via dedicated
components

10zaterdag 20 oktober 2012

Extra - Concurrency
management protocol

allocate
$Place ⟶ $F

Allocate a family context

setstart/setlimit/
setstep/setblock

$F, $V ⟶ ∅
Prepare family creation

create
$F, $PC ⟶ $ack Start bulk creation of threads

rput $F, R, $V ⟶ ∅
rget $F, R ⟶ $V Read/write dataflow channels remotely

sync
$F ⟶ $ack Bulk synchronize on termination

release
$F ⟶ ∅ De-allocate a family context

11zaterdag 20 oktober 2012

Extra -
A perspective shift

CORE I7
LINUX

Thread creation

(pre-allocated stack)

>10000 cycles
in pipeline

Context switch

syscalls, thread
switch, trap, interrupt

>10000 cycles
in pipeline

Thread cleanup

>10000 cycles
in pipeline

D-RISC
WITH TMU

IN HARDWARE

Bulk creation
(metadata allocation

for N threads)
~15 cycles

(7c sync, ~8c async)

Thread creation
1 cycle, async

Context switch

at every waiting
instruction,

also I/O events

<1 cycles

Thread cleanup
1 cycle, async

Bulk synchronizer
cleanup

2 cycles, async

12zaterdag 20 oktober 2012

!!"

#$%&'(

() * + (, -) ,*

.

(....

)....

-....

*....

/....

,....

"....

011&2345

6$789:;8&8'<!

<0=

#$>$44&4?@&8'=

<&AB&7C?$4'='
;7'4&%$:5'
D4$CE;>2

FB23&>';E':;>&1'B1&8

F
$
7
;
1
&
:
;
7
8
1

Extra - results

Legacy platform = MacBook Pro, Core 2 Duo @ 2.4GHz
area(1 Core 2 Duo core) ~ area(32 Microgrid cores)

Equation of state fragment
Time to result

13zaterdag 20 oktober 2012

Extra - results
!!"

#$%&'(

) *) +) () ,) -) .) ")

)

+

,

.

/

*)

*+

011&2345 6$789:;8&8'<!

<0= #$>$44&4?@&8'=

<&AB&7C?$4'=';7'4&%$:5'D4$CE;>2

FB23&>';E':;>&1'B1&8

G
H
!
I
#
'J
'1

Legacy platform = MacBook Pro, Core 2 Duo @ 2.4GHz
area(1 Core 2 Duo core) ~ area(32 Microgrid cores)

Equation of state fragment

14zaterdag 20 oktober 2012

