
Incidental (re)discoveries
about the basics of science

kena
30 jan. 2013

Universiteit van Amsterdam

Purpose of this talk

• I feel I am a bad scientist, and I want to
tell you why
• And maybe share some basics of

epistemology in the process...

Just a reminder:
Falsifiability

Falsifiable knowledge

• Reminder: a theory is falsifiable if it is
possible to empirically demonstrate it is false

• Example:
“All swans are white” is falsifiable, it
suffices to observe one non-white swan

• A falsifiable theory becomes stronger as we
try to prove it wrong, and fail while trying

Example
Unfalsifiable theories

• Simple:

“There are no black swans”

• More tricky:

“White swans do exist”

Weak research
questions

Weak questions

• Example:
“What micro-architecture is better than OoOE?“

• Problems:
• Open to dispute as to what “better” means
• Open-ended search space: OK if I do find

such an architecture, but when do I stop if
I don’t find one?

Weak questions

• Better:
“What micro-architectures provide better
performance/watt at fixed silicon budget
than OoOE?“

• Problems:
• Solved the metric problem
• But the search space is still open

The problem
with open-ended search spaces

• We can’t just say
“Here is my search space; if I can talk about
it with words, there must be at least one
solution” and expect peers to believe/
like it
• We actually have to show/construct

the solution
• If we don’t find a solution, what then?

The problem
with open-ended search spaces

• “there exists a solution in my open-ended search
space but I don’t know it yet”
is a non-falsifiable theory

• Conversely “is there a solution in my open-
ended search space?“
is not answerable scientifically

• Unless the solution is known in advance
• or one take formal precautions to enable

negative proofs

Weak questions

• “Can hardware multithreading be made
cheaper and at least as effective than OoOE
at tolerating fine-grained latencies on single
cores, including memory loads and FPUs?”
 (from previous talk)W E A K S C I E N C E

Your turn now

• What is your most recent research
question?

• What is the most important question in
your field?

• What avenue(s) do you leave to
someone else to prove you are wrong?

The mirage of
generality

Language matters

• Consider: “A cow is an animal“

• The word “is” introduces a vague
notion of equivalence - but which one?
• Hint: “all cows are animals, but there are

other animals that are not cows”

Language matters

• What about:
“a 21064 chip is an Alpha chip”

• “all 21064 chips are Alpha chips” is true,
but there were no other Alpha chips
that were not 21064’s at the time

• The concept “Alpha chip” is derived
from the concrete existence of at least
one 21064 chip

Early 20th century

• 20th century: Russel, Hilbert
“Without pre-agreed definitions for words, we can’t talk about
truth in mathematics and logic”

• Gödel, Boole:
“If we can talk about truth without being vague, we can
encode it too with numbers“

• Church, Turing:
“If we can talk about symbolic computations without being
vague, then we can also build programmable theoretical
machines to do that for us“

Late 20th century

• Turing, and all computer architects afterwards:
“Here is a real-world machine I built, and it can
run these specific programs I wrote
and it does stuff (to/with the real world)“
“Oh, by the way, it fails sometimes and we don’t
know why“
“oh, by the way, we haven’t tried it with other
programs yet“

• Computing is mostly the world of real-world
“things” that escape pure theoretical reasoning

Dijkstra’s cry
(since the 1970’s)

• Logicians, and later pure functional language
designers; spearhead Dijkstra:
“We want to talk to your machine in a fully general
language without bothering with the implementation
specifics“

• Engineers:
“Nobody cares about generality. We make systems
that do the particular jobs as cheap and fast as
possible.“

• Check out: http://www.dijkstrascry.com/

A surprising find

• J. Voeten, TU Eindhoven, 2001, “On the
fundamental limitations of transformational
design” (ACM Trans. DAES)

• Short version: “Engineers win.”
• Long version:

It is not possible to design a fully general
language that programmers can use to achieve
particular tasks in the real world without using
non-formalizable knowledge about the real
world machine.

What this means to me

• Can’t assume/use “it is good enough if it
looks general” when evaluating
contributions

• Generality is not intrinsically valuable for
designing computing systems

• Generality can be used to describe concrete
implementations, not the other way around
(certainly not to specify them!)

Why do I care?

• Consider: “the Microgrid implements the SVP model“
• Two problems:

• SVP did not exist before the Microgrid
(remember: Alpha vs. 21064)

• Generality describes the concrete specific cases,
not the other way around

• Other phrasing:
“SVP is a general model that describes the behavior of
Microgrids, for example as implemented by MGSim”

Why do you care?

• Consider: “in this paper, we present method X; we
then demonstrate our method is effective on example Y”

• Did you not develop method X after you found
a solution to Y, by any chance?

• If so, your paper is weak science too

• Consider instead: “In this paper, we show how we
solved problem Y in a specific way; we then propose to
generalize our solution into a general method X“

• Harder, better, faster, stronger!

Description
vs.

Specification

Why do I care?

• Statement from our logician colleages:
“Place(Component) = CoreNum”

• Is this a description or a specification?

Description vs.
specification

• A description does not say how to actually place components
at run-time

• It’s useless to guide design

• A specification must first tell me how to compute the Place
function

• Can guide design, assuming proper engineering
procedure

• Example: saying that “the Place function is a statistical
distribution“ (like in ADVANCE) doesn’t make it computable;
it’s merely a description, not a specification

• It cannot serve to build a system

Suprise, surprise!
.... not.

• Models are descriptions, not specifications
• Models are necessary to understand

existing systems
• But they are not sufficient to design and

implement (new) systems
• Radically different approach between

people who describe (and analyze, and predict)
and people who specify (and program, and build)

The mirage of
equational systems

• Languages and notations exist that allow us
to express equations between the observed
and the desired

• e.g. functional languages, VHDL
• Pure equational statements can be either

descriptions or specifications, depending on
P.O.V

• BUT: we cannot derive knowledge from
them before choosing a position first.

What is computer
architecture

really?
(As a human activity)

Why should you care?

• Consider: “Based on my model of application
behavior, I explored a design space using simulations
and found this design point with some interesting
properties”

• NB: Simulations are equivalent to automatic
model derivation

• Oops? models can’t specify designs.
• What’s missing: empirical validation! By

constructing and testing the real-world
systems, of course.

We are doomed!
... or not?

• Most architecture research groups can’t
afford to build artifacts for every
design point proposed
• What then of the scientific value of

our statements about design based on
models?

We are doomed!
... or not?

• Empirical observation: our peers let us publish.
• My first 3 hypotheses:

1. They just like us and don’t care we do
weak science

2. They are all weak too, and our entire
“scientific field” is a massive fraud

3. Every result was ultimately accepted by an
engineer who actually tried the idea out

We are doomed!
... or not?

• Hypothesis 4, my favorite:
4. What is valuable in our work (and what we are

expected to do by our peers) is not the science, but
instead something else.

• What then?

• My take: vision, inspiration, guidance,
engineering support, “innovation”

• I don’t mind not being a strong scientist most
of the time, do you?

Wrapping up

What I took away from
these thoughts

• Try to sound more scientific by caring for
falsifiability and showing how others
could prove you wrong if you are

• Don’t confuse description and specification
• Don’t abuse the word “model”
• Build things that work and show them

around, this is what your peers secretly
want behind the façade of science.

Thank you.

