INCIDENTAL (RE)DISCOVERIES
ABOUT THE BASICS OF SCIENCE

KENA
30 JAN. 2013
UNIVERSITEIT VAN AMSTERDAM

PURPOSE OF THIS TALK

e [feel I am a bad scientist, and I want to
tell you why

e And maybe share some basics of
epistemology in the process...

JUST A REMINDER:
FALSIFIABILITY

FALSIFIABLE KNOWLEDGE

e Reminder: a theory is falsifiable if it is
possible to empirically demonstrate it is false

e Example:
“All swans are white” is falsifiable, it
suffices to observe one non-white swan

e A falsifiable theory becomes stronger as we
try to prove it wrong, and fail while trying

EXAMPLE
UNFALSIFIABLE THEORIES

e Simple:
“There are no black swans”

* More tricky:

“White swans do exist”

WEAK RESEARCH
QUESTIONS

WEAK QUESTIONS

e Example:
“What micro-architecture is better than OoOE?“

* Problems:
e Open to dispute as to what “better” means

e Open-ended search space: OK if I do find
such an architecture, but when do I stop if
I don’t find one?

WEAK QUESTIONS

* Better:
“What micro-architectures provide better

performance/watt at fixed silicon budget
than OoOE?”

e Problems:
e Solved the metric problem

e But the search space is still open

THE PROBLEM
WITH OPEN-ENDED SEARCH SPACES

e We can’t just say
“Here is my search space; if I can talk about
it with words, there must be at least one
solution” and expect peers to believe/
like it
e We actually have to show/construct
the solution

o If we don’t find a solution, what then?

THE PROBLEM
WITH OPEN-ENDED SEARCH SPACES

* “there exists a solution in my open-ended search
space but I don't know it yet”
is a non-falsifiable theory

 Conversely “is there a solution in my open-
ended search space?”
is not answerable scientifically

e Unless the solution is known in advance

e or one take formal precautions to enable
negative proofs

WEAK QUESTIONS

o “Can hardware multithre z@ lg/ n?:zde
cheaper and at least @e’fe tive than OoOEL
at tolerating & e—gc?ained latencies on single
cores z@lz?blfing memory loads and FPUs?”

@m previous talk)

YOUR TURN NOW

e What is your most recent research
question?

e What is the most important question in
your field?

* What avenue(s) do you leave to
someone else to prove you are wrong?

THE MIRAGE OF
GENERALITY

LANGUAGE MATTERS

e Consider: “A cow is an animal”

e The word “is” introduces a vague
notion of equivalence - but which one?

o Hint: “all cows are animals, but there are
other animals that are not cows”

LANGUAGE MATTERS

e What about:
“a 21064 chip is an Alpha chip”

o “all 21064 chips are Alpha chips” is true,
but there were no other Alpha chips
that were not 21064’s at the time

e The concept “Alpha chip” is derived
from the concrete existence of at least
one 21064 chip

EARLY 20TH CENTURY

e 20th century: Russel, Hilbert
“Without pre-agreed definitions for words, we can’t talk about
truth in mathematics and logic”

e (Godel, Boole:
“If we can talk about truth without being vague, we can
encode it too with numbers”

e Church, Turing:
“If we can talk about symbolic computations without being
vague, then we can also build programmable theoretical

machines to do that for us”

LATE 20TH CENTURY

e Turing, and all computer architects afterwards:
“Here is a real-world machine I built, and it can
run these specific programs I wrote
and it does stuff (to/with the real world)”

“Oh, by the way, it fails sometimes and we don’t
know why”

“oh, by the way, we haven't tried it with other
programs yet”

e Computing is mostly the world of real-world
“things” that escape pure theoretical reasoning

DIJKSTRA’S CRY
(SINCE THE 1970°S)

* Logicians, and later pure functional language
designers; spearhead Dijkstra:
“We want to talk to your machine in a fully general
language without bothering with the implementation
specifics”

* Engineers:
“Nobody cares about generality. We make systems
that do the particular jobs as cheap and fast as
possible.”

e Check out: http:/ / www.dijkstrascry.com/

A SURPRISING FIND

e J. Voeten, TU Eindhoven, 2001, “On the
fundamental limitations of transformational
design” (ACM Trans. DAES)

e Short version: “Engineers win.”

* Long version:
It is not possible to design a fully general
language that programmers can use to achieve
particular tasks in the real world without using
non-formalizable knowledge about the real
world machine.

WHAT THIS MEANS TO ME

e Can’t assume/use “it is good enough if it
looks general” when evaluating
contributions

* Generality is not intrinsically valuable for
designing computing systems

* Generality can be used to describe concrete
implementations, not the other way around
(certainly not to specify them!)

WHY DO I CARE?

e Consider: “the Microgrid implements the SVP model”
 Two problems:

e SVP did not exist before the Microgrid
(remember: Alpha vs. 21064)

e Generality describes the concrete specific cases,
not the other way around

e Other phrasing:
“SVP is a general model that describes the behavior of
Microgrids, for example as implemented by MGSim”

WHY DO YOU CARE?

o Consider: “in this paper, we present method X; we
then demonstrate our method is effective on example Y”

e Did you not develop method X after you found
a solution to Y, by any chance?

* If so, your paper is weak science too

e Consider instead: “In this paper, we show how we
solved problem Y in a specific way; we then propose to
generalize our solution into a general method X*

* Harder, better, faster, stronger!

DESCRIPTION
VS.
SPECIFICATION

WHY DO I CARE?

e Statement from our logician colleages:
“Place(Component) = CoreNum”

e [s this a description or a specification?

DESCRIPTION VS.
SPECIFICATION

e A description does not say how to actually place components
at run-time

* It's useless to guide design

e A specification must first tell me how to compute the Place
function

* Can guide design, assuming proper engineering
procedure

e Example: saying that “the Place function is a statistical
distribution” (like in ADVANCE) doesn’t make it computable;
it's merely a description, not a specification

e [t cannot serve to build a system

SUPRISE, SURPRISE!
.... NOT.

* Models are descriptions, not specifications

* Models are necessary to understand
existing systems

e But they are not sufficient to design and
implement (new) systems

e Radically different approach between
people who describe (and analyze, and predict)
and people who specity (and program, and build)

THE MIRAGE OF
EQUATIONAL SYSTEMS

e Languages and notations exist that allow us
to express equations between the observed
and the desired

e e.g. functional languages, VHDL

e Pure equational statements can be either

descriptions or specifications, depending on
P.O.V

e BUT: we cannot derive knowledge from
them before choosing a position first.

WHAT IS COMPUTER
ARCHITECTURE
REALLY?

(AS A HUMAN ACTIVITY)

WHY SHOULD YOU CARE?

* Consider: “Based on my model of application
behavior, I explored a design space using simulations
and found this design point with some interesting
properties”

e NB: Simulations are equivalent to automatic
model derivation

* Oops? models can’t specify designs.

e What's missing: empirical validation! By
constructing and testing the real-world
systems, of course.

WE ARE DOOMED!
... OR NOT?

e Most architecture research groups can’t
afford to build artifacts for every
design point proposed

e What then of the scientific value of
our statements about design based on
models?

WE ARE DOOMED!
... OR NOT?

o Empirical observation: our peers let us publish.
e My first 3 hypotheses:

1. They just like us and don’t care we do
weak science

2. They are all weak too, and our entire
“scientific field” is a massive fraud

3. Every result was ultimately accepted by an
engineer who actually tried the idea out

WE ARE DOOMED!
... OR NOT?

e Hypothesis 4, my favorite:

4. What is valuable in our work (and what we are
expected to do by our peers) is not the science, but
instead something else.

e What then?

e My take: vision, inspiration, guidance,
engineering support, “innovation”

e [don’t mind not being a strong scientist most

of the time, do you?

WRAPPING UP

WHAT | TOOK AWAY FROM
THESE THOUGHTS

e Try to sound more scientific by caring for
falsifiability and showing how others
could prove you wrong if you are

* Don’t confuse description and specification
e Don’t abuse the word “model”

e Build things that work and show them
around, this is what your peers secretly
want behind the facade of science.

THANK YOU.

