
Why they care
and why you should too

Raphael ‘kena’ Poss,
Jan 12th 2017

1

What this talk is not about
The design of Rust and why it works well — this is better:

https://air.mozilla.org/guaranteeing-memory-safety-in-rust/

A tutorial to teach you how to program in Rust — go there instead:

https://doc.rust-lang.org/book/getting-started.html

A feature-to-feature comparison — check this out instead:

http://kukuruku.co/hub/rust/comparing-rust-and-cpp
http://science.raphael.poss.name/rust-for-functional-programmers.html

2

https://air.mozilla.org/guaranteeing-memory-safety-in-rust/
https://air.mozilla.org/guaranteeing-memory-safety-in-rust/
https://doc.rust-lang.org/book/getting-started.html
https://doc.rust-lang.org/book/getting-started.html
http://kukuruku.co/hub/rust/comparing-rust-and-cpp
http://science.raphael.poss.name/rust-for-functional-programmers.html
http://science.raphael.poss.name/rust-for-functional-programmers.html

Instead:

Does Rust have a chance to replace C?

3

I won’t tell you!
But I’ll teach you how to guess.
Suppose you want to learn how to answer the question,

for any new language X

“is X going to be successful? and do I need to care?”

Mental equipment you’ll need:

- Abstract machine models
- Conceptual complexity
- Understanding of Relevance and Survival criteria
- (just a little) Language features with qualitative impact

4

Abstract machine models
Abstract computing model: mental model to predict functional behavior

Abstract machine model: mental model to predict operational behavior
(AMM = computing model + cost function)

Observation 1:
All general-purpose computing models are (functionally) equivalent
(Turing-equivalence) and thus everyone makes their own and nobody cares

Observation 2:
Different AMMs are (usually) not operationally equivalent
some are strictly better than others for specific tasks

5

Abstract machine models — today
Two groups with backward operational compatibility:

Turing machine → register machine → random-access machine (RAM)
FORTRAN, C, C++, Ada, ML …

→ Parallel RAM (PRAM)
OpenMP, OpenCL, CUDA

→ PRAM with partitioned memories
MPI, PGAS … JVM! (Java, Scala…)

Dataflow machines → Spineless, Tagless Machine → MIO
 Occam Haskell (modern) Haskell

NB: this has

nothing to do

with memory

6

Abstract machine models — value ranking
The “goodness” of a model depends on how accurately it predicts stuff

(Science 101)

Observations:

1. Today’s computers are accurately modelled by RAMs (albeit barely)
2. Today’s computers are less and less well modelled by PRAMs
3. Today’s computers are not operationally modelled by dataflow models

and followups — these models simply don’t inform well about operation

AMM not a good predictor of operational behavior? Bad for production.
”Haskell programmers know the value of everything but not the cost”

7

That’s why...
- C and C++ are still successful

— their base AMM is RAM, and each implementation tweaks that

- “C/C++ with threads” is moderately successful with few threads
— PRAM on traditional computers is still accurate with few processors

- PRAM with many threads (e.g. CUDA) only successful on accelerators
— these are the only platforms where PRAM is an accurate model

- Java is hard to “work with” (operationally) with large programs
— partitioned PRAM is too hard to think about

8

Abstract machine models — study material
Just one:

Peter van Emde Boas, Handbook of theoretical computer science (vol. A),
chapter Machine models and simulations, p. 1-66, MIT Press, 1990,
ISBN 0-444-88071-2

This will teach you how to quantify AMM adequacy.

(We have a paper copy at the library!)

9

Now you’re the hero

“Rust keeps the C abstract machine model but
innovates on the language interface. “
— someone , 2014

What do you think this implies?

Also, “Corrode” https://github.com/jameysharp/corrode . Check it out! 10

https://github.com/jameysharp/corrode

Conceptual models & complexity
Conceptual model: the stuff you need to know before you understand what’s
going on functionally
Conceptual complexity: how many pages in the book you need to read(*)

Size (book pages) Examples

Simple — good Less than 10 pages LISP, C89, Go, SQL’82
Rust (today)

Moderate
— good only if it pays back in
productivity

Less than 100 pages ISO C’11 / C++’14 (good)
Java (not good)
Modern Haskell (good)
Rust (probably in 5 years)

Absolutely insane More than 200 pages COBOL, SQL’11, C++’03
11

Conceptual model — as predictors
Method: plot time as X, complexity as Y

Dangerous zone

12

Relevance and survival criteria
Relevance:

- Usually phrased as: “is there a need for this?”
- In reality: “how much are people annoyed with the status quo?”

Quantify with “How many man-hours spent to define similar stuff per 10 years”

- C, C++, Haskell: super relevant (tons of work in the 70s-80s)
- Python: super relevant (tons of work in the 90s)
- F#: not very relevant (very little work in 2000-2010)
- Scala, Clojure, Go: moderately relevant
- Rust: decide for yourself

13

Relevance and survival criteria
Survival criteria:

- Usually phrased as “becomes big” (#users, money, literature…)
That’s only observable in hindsight!

- In reality, predicted by public bus factor + complexity growth + anchors

Public bus factor (https://en.wikipedia.org/wiki/Bus_factor)
≃ number of public FTEs that need to disappear before the project is dead

Complexity growth: shape of the conceptual complexity curve
→ ok under the danger zone; quadratic/exponential: super bad

Anchors: why people keep coming back to it 14

https://en.wikipedia.org/wiki/Bus_factor

Survival predictors
Language Bus factor Complexity growth Anchors

Pascal <50 Near-constant Approachability

CUDA 0 + NVIDIA Quadratic, not good Performance

Python >1000 Linear, small! Productivity for fast prototyping

Go >100 + Google Linear, small (I have no idea)

Julia 3 Quadratic, not good (I have no idea)

Haskell >100 Inverse quadratic, ok Purity + expressivity

C >10000 Linear, moderate Dark resistance [1]

Rust >100 + Mozilla (Maybe too soon to tell) Modern + Zero overhead link to C

[1] http://science.raphael.poss.name/posts/2014/12/20/dark-resistance/
15

http://science.raphael.poss.name/posts/2014/12/20/dark-resistance/

Features in context
FORTRAN C C++ Haskell Java Go Rust

Age 64 years 45 years 38 years 30 years 22 years 8 years 7 years

Zero-cost abstractions ✓ ✓ ✓ ✓

Minimal runtime ✓ ✓ ಠ_ಠ ✓

Type inference ಠ_ಠ ✓ ✓

Trait-based generics ಠ_ಠ ✓ ✓

Pattern matching / ADTs ✓ ✓

Threads without data races ✓ (ノಠ益ಠ)ノ彡┻━┻ ✓ ಠ_ಠ ˅ ✓

Guaranteed memory safety ✓ (ノಠ益ಠ)ノ彡┻━┻ ✓ ✓

Design guided by PL experts ✓ ಠ_ಠ ✓ ಠ_ಠ (ノಠ益ಠ)ノ彡┻━┻ ✓

Debuggers & troubleshooting ✓ ✓ ✓ ಠ_ಠ ✓ ಠ_ಠ ✓

Year 2000 was here!

17 years ago

Also cpus are not faster

anymore since then

16

Zero-cost abstractions
C++ implementations obey the zero-overhead principle: What you don’t use, you
don’t pay for [Stroustrup, 1994]. And further: What you do use, you couldn’t hand
code any better. – Bjarne Stroustrup

Why: can’t really make code the fastest possible otherwise

Counter-examples:

- Mandatory dynamic dispatch (C++*, Java*, Python, Go*)
- Mandatory run-time array bounds checking (Java, Go, Python, Haskell)
- Mandatory run-time type checking for conversions (Java, Go, Python)
- Mandatory garbage collector (Java, Go, ML, Haskell, Python)

(Rust does this too)

17

Garbage collection vs. zero overhead
- The programmer’s need for conciseness and avoidance of errors

→ demand for automatic deallocation (“no explicit free()”)
- The means by which mem. mgt. is automated:

Examples Zero overhead

No management (do dynamic allocation or no deallocation) FORTRAN77 ✓

Eager run-time deallocation via reference counting Python, C++*

Lazy run-time deallocation
via asynchronous GC (mark-sweep etc)

Go, Java, Haskell

Compiler-generated precise deallocation
via linear or affine typing

Rust, Idris, Clean,
C++*

✓

(They call it “borrow checker” in Rust) 18

Minimal runtime
Run-time system (simplified definition): code+data next to your program without
which the program wouldn’t run.

“Minimal”: count how many bytes in exec + libs: smaller is better

Why: makes portability easier, often makes program faster because I-caches

- Simplest “hello world” program in C:
<100 bytes code+data, runtime optional

- In C++: 100KiB - 1MiB (also, needs C’s entire runtime)
- In Haskell: 1MiB - 10MiB (also, needs C’s entire runtime)
- In Java: 10MiB - 200MiB (also, needs C’s entire runtime)

(in Rust too)

19

“Modern” (40 years old) language features
Pattern matching, Algebraic Data Types, generic functions and data structures:
make code smaller, closer to specifications, easier to read and understand, easier to
maintain and reuse, easier to formally prove (for correctness)

Type inference:
makes code smaller, easier to read and understand, easier to maintain and reuse

(sensing the pattern yet?)

Why: human time is now the most expensive resource in tech.

20

Safety & Robustness
50 years ago: an error shouldn’t stop the entire computer

40 years ago: an error shouldn’t stop the entire program

30 years ago: an error shouldn’t influence other users sharing the computer

20 years ago: an error shouldn’t kill people or help an adversary to hurt you

10 years ago: an error shouldn’t kill people or help an adversary to hurt you

Now, still after 20 years:
an error shouldn’t kill people or help an adversary to hurt you

21

Software errors kill people (or nearly do)

https://en.wikipedia.org/wiki/Therac-25

3 people died because of
a race condition in concurrent code

See also:
- Ariane 5 disaster - insufficient data typing
- Toyota brake system

- improper schedule verification

This can be (oh so easily!) averted with
adequate expressivity in and static checks by
programming languages

22

https://en.wikipedia.org/wiki/Therac-25
https://en.wikipedia.org/wiki/Therac-25

Software errors are used to hurt people
A.k.a “Malware”

- Fraud
- Impersonation
- Tampering
- Unwanted disclosure
- Blackmail

Enabling technical factors:

- Off-by-one errors
- Buffer overflows
- Stack overflows
- Use-after-free
- Insufficient typing

Malware is a human (non-technical) problem but can be (partly) alleviated by tech solutions

Language-based solutions can achieve (some) protection by default

Functional languages got this (mostly) right 40 years ago
But the run-time overhead was a non-starter, until recent innovations

23

Why you should care - to summarize
If you create software for work

And you care about productivity, performance, safety and robustness

Then you’d be s ̤e ͉̰ri ̹̳ͅo ͙͇̼̮us ̘͙̠̭̫ly ̥̱̦ i ̠̣̙̲̥̪̭͕̪͘͝r ͏̢̱͕̪̻͚̻r ̷̷̨̟͎̖̬̫̫̦̮̲̘̹̪̪̳̹̻̲̯͙̕e ̩̻͓̼͎̮̯̲̖̹̬̝̰͚̩̟͠s ̵͏̡̟̥̳̥͉̳͚̦̹̻̘͠͡p ̠͎̟̗͙̜̕̕͢͢͝o ̵̨̻̭̤̤͎̠̘͇͙̫͓̗̳̠̻̹̹̕͞n ̶̨̬͈̳̻̙̦͝s ̨̢̛̼̗̝̺̭̳̮͓̗̱̫̺̤i ̷̴̘͇͓̰̭̳͢͡b ̥͍̣͔̳͟l ̼̦̥̖͓̦̠͎̜̲̳̫͜e ͏̲̮̪͍͚̜̙͖͎͔̬͍͔̯͚͚̦

unless

you seriously study 21st century programming languages

NB: Rust is just an example — other examples: Elixir, Scala

24

rust-lang.org

25

