
Control structures: while and for

In a recipe, sometimes you find repetition instructions, for example: “add salt and pepper until
seasoned.” When reading this, a cook understands that he/she must start adding a little salt and
pepper, taste the result, then if the result is not yet satisfactory, add a little more and taste again,
and so on.

The corresponding construct in imperative language is the iteration statement. There are actu-
ally several of them.

Simple “while loop”

The simplest iteration statement is defined as follows:
Iteration statement, variant 1 (also called “while loop”):

Syntax:

while (<expression>) <block-or-statement>
(the keyword “while” followed by an expression between parentheses, fol-
lowed by either a statement or block between “{” and “}”. The statement-or-
block part is also called the body of the iteration statement.)

Semantics:

The expression between parentheses, also called conditional expression, is eval-
uated first. If its value is equivalent to true, the body is executed. Then the
conditional expression it is evaluated again. If it is still true, the body is ex-
ecuted again. The construct continues to repeat the test and execution until
the condition becomes false.

For example:

n = 1;
while (n <= 100)
{

System.out.println(n);
n = n + 1;

}

System.out.println("bye " + n);

This program fragment prints the numbers from 1 to 100 on the standard output, followed by
“bye 101”.

Note that the condition is evaluated at the beginning. If the condition is false when the while loop
is first reached, the body is not executed at all. For example:

1

n = 10;
while (n < 5)
{

System.out.println(n);
n = n + 1;

}

System.out.println("bye " + n);

This program fragment only prints “bye 10”, because n is greater than 5 when the while loop
is reached during execution.

Condition at the end, the “do-while loop”

The second iteration statement is defined as follows:
Iteration statement, variant 2 (also called “do-while loop”):

Syntax:

do <block-or-statement> while (<expression>) ;

(the keyword “do”, followed by either a statement or block between “{” and
“}”, followed by the keyword “while”, followed by an expression between
parentheses, followed by a semicolon. The statement-or-block part is also
called the body of the iteration statement.)

Semantics:

The body is executed first. The expression between parentheses, also called
conditional expression, is then evaluated. If its value is equivalent to true, the
body is executed again. The construct continues to repeat the execution and
test until the condition becomes false.

For example:

n = 1;
do
{

System.out.println(n);
n = n + 1;

}
while (n <= 100);

System.out.println("bye " + n);

This program fragment prints the numbers from 1 to 100 on the standard output, followed by
“bye 101”.

Note that the body is always executed once. For example:

n = 10;
do
{

System.out.println(n);
n = n + 1;

}
while (n < 5);

System.out.println("bye " + n);

2

This program fragment prints 10, then “bye 11”.

When to choose “do-while” over “while”?

When writing your own code, if you hesitate between “while” and “do-while” in some situation,
you can apply the following technique:

Start writing the code using “while”; then if you recognize the following pattern:

<action X> ;

while (<condition>) {

<action X> ;

}

In other word, you see a part of your program is duplicated just before the while and within its
body; then you can rewrite the code to use “do-while” instead:

do {

<action X> ;

} while (<condition>);

In practice, “do-while” is used much less frequently than just “while”. Many programming
languages (like Python) even do not offer it at all.

Compact iteration: the “for loop”

There is a pattern that often occurs in programs:

// Example 1:
i = 0;
while (i <= 100)
{

System.out.println(i);
i = i + 1;

}

// Example 2:
i = 100;
while (i > 0)
{

System.out.println(i);
i = i - 1;

}

// Example 3:
i = 1;
while (i < 500)
{

System.out.println(i);
i = i * 2;

}

3

The common pattern in these examples is “an iteration whose condition depends a counter
variable initialized once before the loop starts and updated in the loop body”. We can abstract it
as follows:

<initialization>

while (<condition>) {

<something...>
<update-counter> ;

}

This pattern is so often used that the designers of the C language have created a shorthand
construct, that is also available in C++ and Java. It is defined as follows:

Iteration statement, variant 3 (also called “for loop”):

Syntax:

for (<initialization> ; <condition> ; <update-counter>)

<block-or-statement>

(the keyword “for”, followed by an opening parenthesis, followed by a first
expression or declaration called the initializer, followed by a semicolon “;”,
followed by a 2nd expression called the condition, followed by another semi-
colon “;”, followed by a third expression called the update expression, fol-
lowed by a closing parenthesis, followed by a statement, or block between
“{” and “}”. The statement-or-block part is also called the body of the itera-
tion statement.)

Semantics:

Equivalent to:

{

<initialization> ;

while (<condition>) {

<block-or-statement>
<update> ;

}

}

The initialization is executed first. The condition is then evaluated. If its
value is equivalent to true, the body is executed, then the update expression.
Then the condition is evaluated again; if it is still true, the body and update
are executed again. The construct continues to repeat the test and execution
until the condition becomes false.

For example:

4

for (i = 0; i <= 100; i = i + 1)
{

System.out.println(i);
}

for (i = 100; i > 0; i = i - 1)
{

System.out.println(i);
}

for (i = 1; i < 500; i = i * 2)
{

System.out.println(i);

}

Like for the “while loop”, the condition is evaluated at the beginning, so If the condition is
false when the for loop is first reached, the body is not executed at all.

When to choose “for” over “while”?

When writing your own code, if you hesitate between “for” and “while” in some situation, you
can apply the following technique:

∙ if you know how many iterations there will be before the loop starts, use “for”;

∙ if you do not know how many iterations there will be, try writing your code using both
“while” and “for”, and choose the shortest of the two.

Examples

Check out the examples Alphabet, Alphabet2 and AlphabetZonderK in the accompanying
source code repository.

Important concepts

∙ iteration statement, definition of the 3 variants

∙ the terms “while loop”, “do-while loop” and “for loop”

∙ the parts of an iteration statement: the condition expression and the body;

∙ when to choose “do-while” over “while”;

∙ when to choose “for” over “while”.

Further reading

∙ Think Java, sections 7.2 (pp. 76-78), 12.4 (pp. 152-153)

∙ Programming in Java, sections 3.3, 3.3.1, 3.3.2 (pp. 82-86) and 3.4 (pp. 88-96)

5

∙ Absolute Java, section 3.3 with exercises 22-39 (pp. 132-147)

Copyright and licensing

Copyright c○ 2014, Raphael ‘kena’ Poss. Permission is granted to distribute, reuse and modify
this document according to the terms of the Creative Commons Attribution-ShareAlike 4.0 In-
ternational License. To view a copy of this license, visit http://creativecommons.org/licenses/
by-sa/4.0/.

6

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

	Simple “while loop”
	Condition at the end, the “do-while loop”
	When to choose “do-while” over “while”?

	Compact iteration: the “for loop”
	When to choose “for” over “while”?

	Examples
	Important concepts
	Further reading
	Copyright and licensing

