
Introduction to objects

History and motivation

Internally computers execute instruction one after another, and manipulate raw bits of data in
memory. The addition of names, functions, variables etc in programming language is meant to
help programmers to do their job better, not the computer.

When the first computers were built, the people in charge of designing programming lan-
guages started with very simple features: variables, arrays, procedures. All the entities named in
a program existed side by side, so programmers had to choose a different name for every new entity.
This early requirement that all names must be different wasn’t a problem initially, when there
were only few entities in a computer. However as software engineering matured, software be-
came more and more complex and it became difficult for human programmers to keep track of
the names of everything.

In order to create a more productive structure for programmers, computer scientists in the
1970’s have invented a new way to think about programs.

In their view, programmers should imagine that they are writing code for a large collection
of many micro-computers, where each micro-computer would only perform a very simple task
with very few variables. This way, it was thought, the human programmer could do a better job,
because on each of these micro-computers the programmer could focus on performing only one
task, and doing it well.

Also, because each of these micro-computers would have its own procedures and variables, the
programmer did not need to invent new names all the time: the same name could designate different
things on different micro-computers. Using this abstraction, a large software application can be
built by connecting multiple such micro-computers together in a network and sending messages
between them.

For example, this was very powerful to write programs that simulate traffic on the road: one
would program a micro-computer to simulate the behavior of one car, then another for another
car, and so on, then one micro-computers per road segment, and each could be programmed sep-
arately. In two different cars, the same variable name “speed” could be reused to designate each
car’s speed. The messages between a “car” micro-computer and a “street” micro-computer would
be “the car has entered this streed” or “the car has left this street”. With this simple composi-
tion, the entire program could then imitate a complex traffic situation, and each individual part
could be very simply implemented without requiring the programmer to know about the complex
whole.

As it so happens, this idea was very successful. Programming in this way did indeed increase
the productivity of programmers and enable more complex applications that worked with fewer
errors.

1

The micro-computers in this story are what are now called objects: a small unit of behavior in
a large computer system with its own variables and procedures, and where names can have a local
meaning which differs across different objects.

Object-oriented languages

A programming language is said to be “object-oriented” when it promotes thinking in terms of
objects when writing code. A further distinction is made between:

∙ languages that support object orientation as an opt-in feature, where programmers can ignore
object orientation when starting to write code, and only use objects in some cases; this is the
case for most programming languages, including C, C++, Python, PHP, OCaml, Matlab, R;

∙ languages that are exclusively object-oriented, where a programmer can only write code in
terms of objects; this is the case with e.g. Smalltalk and Java.

In general, an introductory course on programming should not use a language that is exclusively
object-oriented because it forces a teacher to talk about objects before talking about more important
topics, like task decomposition, typing, etc. However, perhaps unfortunately, your education
program requires us to start with Java, so you need to start caring about objects right now, next to
the other topics which are independent from objects.

Starting with Java’s objects

Because programmers usually write complex programs that do not use only one object, but rather
many of them side by side, it is more practical to express in program code how an entire family of
objects should behave, instead of writing the same code over and over for every object.

This generalization is so important that all object-oriented languages are designed with this in
mind. So the primary construct in the language is not the object, but rather the set of all possible
objects that belong to the same family. This set is then described in code as a class.

In other words, a class is a type which describes a set of all possible objects that share a common
behavior. For example in the traffic simulation mentioned above, “car” is a class, which describes
the behavior of every possible car in a general way.

We will see more of objects and classes in a later lecture; for now you can simply remember
that a class is defined in Java using the following construct:

Class definition:

Syntax:

class <identifier> {

[

[<variable/attribute declaration>]*

[<function/method definition>]*

]*

2

}

(The keyword “class”, followed by an identifier, followed by an opening brace, fol-
lowed by zero or more variable and/or method definition(s), followed by a closing
brace)

Semantics: this construct defines a class named by the identifier at the top, so that all
objects created in this class have their own copy of the variables but share the same
method code.

For example:

class Car {
double mass;
double speed;

void accelerate(double force, double timeDelta)
{ ... }

}

The variables defined inside a class are called attributes. The procedures or functions defined
inside a class are called methods. The previous Car example has two attributes mass and speed and
one method accelerate.

Attributes are “inside” every object created from the class: two different objects will have two
different sets of variables.

The “methods” are connected to the idea of exchanging messages between objects as explained
above: an object can “send” a message to another, and this will cause the execution of the corre-
sponding method on the target object. The general construct for this is defined as follows:

Method invocation:

Syntax:

<expression> . <identifier> ([<expression> [, <expression>]*]?)

(An expression, followed by a dot ., followed by a name, followed by an opening
parenthesis, followed by zero or more expressions separated by commas, followed by
a closing parenthesis)

Semantics: evaluate all the expressions, then send a message to the object identifed
by the first expression, that causes the procedure/function named by the name in 2nd
position, inside the object class, to be called on the target object, with the remaining
expressions as input arguments.

For example:

out.println("hello")

This evaluates first “out”, which designates an object of class PrintStream; then sends a message
to the object out which causes its method println to be called with one argument, the string “hello”.

3

Program start-up and execution order

There is a clear advantage to programming languages that are not exclusively object-oriented: it
is easy to understand where the program starts. It is quite simple: the first line in the program text
is typically the first thing that runs when the execution begins.

This simplicity implies that a programmer can literally write the code in the same order it will
be run, which makes the task of a beginner programmer quite comfortable.

Unfortunately this is not possible in languages that are exclusively object-oriented: the first line
of a program there typically has nothing to do with program execution, but rather the definition
of classes.

So how does Java, for example, know where the program starts?
The rule is quite simple: Java will look at all classes defined in the application (there may be

more than one), and searches for a class which has a special method called “main”. If none is found, the
program cannot start; if one is found, the execution starts there.

This method is “special” because it must be introduced in a very specific way, which is waaaay
more complicated than most the “regular” functions/procedures you will ever use in your own
programs:

class HelloWorld {

public static void main(String[] args) {
...

}

}

We will explain the “public static void” and the “String[]” later; for the time being, just re-
member that “main” must always have this specific form.

To summarize

Objects and classes will be presented in more details in a later lecture. For the time being, just
remember the following:

∙ because you are using Java, your entire program must be structured using classes;

∙ a class begins with “class YourName {” and ends with “}”, this will be mandatory in all your
Java code;

∙ all variables and function/procedures in Java must be part of a class, written within the
braces;

∙ at least one class in your program must have a “main” method, with a fixed form constrained
by the language.

Important concepts

∙ programming languages exist to help programmers, not computers;

4

∙ choosing many different names is hard;

∙ objects define small unit of behavior in a large system;

∙ object orientation was successful because thinking in terms of objects decreases the naming
problem and simplifies the definition of complex programs;

∙ the difference between object orientation as an opt-in feature (most languages) and exclusive
object orientation (Java, Smalltalk, a few others);

∙ a class is a common definition for a family of objects;

∙ attribute = variable inside a class;

∙ method = function/procedure inside a class;

∙ in Java all program behavior must be part of a class;

∙ there must be a “main” method somewhere.

Further reading

∙ Introduction to Programming, sections 1.4-1.5 (pp. 8-13)

∙ Think Java, sections 15.1-15.2 (pp. 193-194)

∙ Absolute Java, section 1.1 (pp. 2-4)

Copyright and licensing

Copyright c○ 2014, Raphael ‘kena’ Poss. Permission is granted to distribute, reuse and modify
this document according to the terms of the Creative Commons Attribution-ShareAlike 4.0 In-
ternational License. To view a copy of this license, visit http://creativecommons.org/licenses/
by-sa/4.0/.

5

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

	History and motivation
	Object-oriented languages
	Starting with Java's objects
	Program start-up and execution order
	To summarize
	Important concepts
	Further reading
	Copyright and licensing

