
Apple-CORE: harnessing general-purpose many-cores

with hardware concurrency management

R. Poss∗, M. Lankamp, Q. Yang, J. Fu, M.W. van Tol, I. Uddin,
C. Jesshope

University of Amsterdam, The Netherlands

Abstract

To harness the potential of CMPs for scalable, energy-efficient performance
in general-purpose computers, the Apple-CORE project has co-designed a
general machine model and concurrency control interface with dedicated
hardware support for concurrency management across multiple cores. Its
SVP interface combines dataflow synchronisation with imperative program-
ming, towards the efficient use of parallelism in general-purpose workloads.
Its implementation in hardware provides logic able to coordinate single-issue,
in-order multi-threaded RISC cores into computation clusters on chip, called
Microgrids. In contrast with the traditional “accelerator” approach, Mi-
crogrids are components in distributed systems on chip that consider both
clusters of small cores and optional, larger sequential cores as system services
shared between applications. The key aspects of the design are asynchrony,
i.e. the ability to tolerate irregular long latencies on chip, a scale-invariant
programming model, a distributed chip resource model, and the transparent
performance scaling of a single program binary code across multiple cluster
sizes. This article describes the execution model, the core micro-architecture,
its realization in a many-core, general-purpose processor chip and its software
environment. This article also presents cycle-accurate simulation results for
various key algorithmic and cryptographic kernels. The results show good
efficiency in terms of the utilisation of hardware despite the high-latency
memory accesses and good scalability across relatively large clusters of cores.

Keywords: chip multiprocessors, many-cores, hardware multithreading,
dataflow scheduling, operating systems in hardware, microgrids

∗Corresponding author

Preprint submitted to Embedded Hardware Design (Microprocessors and Microsystems)April 10, 2013

1. Introduction

Ever since the turn of the century, fundamental energy and scalability is-
sues have precluded further performance improvements for single threads [1].
To “cut the gordian knot,” the industry has since shifted towards multiply-
ing the number of processors on chip, creating increasing larger Chip Multi-
Processors (CMPs) by processor counts, to take advantage of efficiency gains
made possible by frequency scaling [1, 2].

This shift to multi-core chips has caused a commotion in those software
communities that had gotten used to transparent frequency increases and im-
plicit instruction-level parallelism (ILP), without ever questioning the basic
machine model targeted by programming languages and complexity theory.
“The free lunch is over” [3], and software ecosystems now have to acknowl-
edge and understand explicit on-chip parallelism and energy constraints to
fully utilize current and future hardware.

We propose that while general-purpose programmers have been strug-
gling to identify, extract and/or expose concurrency in programs during the
last ten years, a large amount of untapped higher-level parallelism has ap-
peared in applications, ready to be exploited. This is a consequence of the
increasing number of features, or services integrated into user-facing applica-
tions. In other words, while Amdahl’s law stays valid for individual programs,
we should recognize that Amdahl did not predict that single users would
nowadays be routinely running so many loosely coupled programs simulta-
neously. This thus begs the question: assuming that multi-scale concurrency
in software has become the norm, what properties should we expect to find in
general-purpose processor chips? This is the question that the project Archi-
tecture Paradigms and Programming Languages for Efficient programming of
multiple CORES (Apple-CORE) attempted to answer.

The Apple-CORE strategy to answer this question was holistic, ground-
breaking and perhaps suprisingly also conservative. The holistic side was
to co-design a processor chip, together with its programming model, tool
chain and specialized benchmark applications. We outline the corresponding
innovations in section 3. The conservative side was a careful attention for
compatibility with existing application code, in particular standard C and
the traditional C/Unix execution environment. We touch on these aspects in
section 5. The outcome of Apple-CORE is intriguing: it is possible to give

2

up many hardware features found in traditional general-purpose core designs,
such as branch predictors and interrupt-based control flow preemption, and
replace them with new features that are slightly less advantageous for purely
sequential workloads, but greatly advantageous for heterogeneous, mixed se-
quential/parallel workloads. To demonstrate this result, Apple-CORE has
produced both FPGA-based prototypes and production-grade simulation and
compiler software, and applied this technology to common software work-
loads; an extract of the corresponding empirical experiments is reported on
in section 5. The Apple-CORE technology has also been made publicly avail-
able for further research in this area, even for third parties without access to
a physical implementation of the proposed design.

2. Context and design motivations

We have detailed the arguments that have justified Apple-CORE’s design
directions in a previous publication [4]; we provide a summary here.

The first concern was avoiding model assymmetry : while hardware het-
erogeneity is a proven approach to increase efficiency and decrease costs, the
desired adoption of multi-cores is only possible if the machine model exposes
a single programming model for all resources, instead of different program-
ming interfaces for each component. Towards this, Apple-CORE has centered
its approach on its SVP protocol, which coordinates the various computing
resources on chip with a single set of semantics.

A related interest was to acknowledge the limitations of specialization:
while desirable for specific application scenarios, hardware specialization in-
creases the amount of component properties that must be described to re-
source managers in operating systems and compilers. Apple-CORE instead
promotes simple, adaptable cores that can be pooled in clusters of config-
urable sizes depending on application requirements, thereby introducing re-
source fungibility1.

As the chip size grows relative to the gate size, so does the latency be-
tween on-chip components (cores, caches and scratchpads) relative to the
pipeline cycle time; this divergence is the on-chip equivalent of the “mem-
ory wall” [5]. Moreover, inter-component latencies will become increasingly

1Fungibility is the property of a good or a commodity whose individual units are capable
of mutual substitution. Example fungible commodities include crude oil, wheat, precious
metals, and currencies.

3

unpredictable, both due to overall usage unpredictability in heterogeneous
application scenarios and due to soft errors in circuits. These latencies cannot
be easily tolerated using superscalar issue or VLIW, for the reasons outlined
in [6]; Apple-CORE instead promotes the known solution, that is, tolerate
unpredictable on-chip latencies using hardware multi-threading (HMT) with
dynamic scheduling over shorter pipelines.

Finally, Apple-CORE has acknowledged that concurrency in software
comes with varying granularity. The state of the art in concurrency man-
agers deals well with coarse-grained concurrency, for example external I/O
or regular, wide-breadth concurrency patterns extracted from homogeneous
sequential tight loops: these can be managed in software schedulers with
coarse threads or via blocking aggregation (e.g. OpenMP [7]). Meanwhile,
software schedulers struggle with fine-grain heterogeneous task concurrency,
such as found in graph reduction, irregular tight loops or data flow algo-
rithms. In these latter cases, a strain is put on compilers and run-time sys-
tems: they must determine the suitable aggregate units of concurrency from
programs that both optimize load balancing and compensate concurrency
management costs. This motivates the acceleration of space scheduling, con-
sidered as a system function, using dedicated hardware logic. This idea to
re-introduce hardware support for concurrency management after a hiatus of
twenty years [8, 9, 10, 11, 12] is further motivated by three new arguments:
the first is that software ecosystems have become more accepting of express-
ing concurrency explicitly (e.g. in the output of automated parallelization,
which has recently tremendously matured); the second is that accelerated
hardware support makes it possible to reuse clusters of simple cores as an
efficient substitute for specialized SPMD/SIMD units; third, placing system
functions in dedicated hardware units makes the cost of concurrency man-
agement more predictable by avoiding the interleaving of computations with
system activities on the memory subsystem.

3. Outline of the project’s strategy

The management of concurrency in hardware is central to Apple-CORE’s
strategy. The main principle is to expose all known concurrency in software
at the hardware/software interface using new instructions in the ISA. To
achieve this, Apple-CORE combines two previous developments.

4

3.1. Contributions to processor architecture: Microgrids

At the hardware level, the project exploits the D-RISC microprocessor
core design [13], more specifically its combination of hardware multithread-
ing, dataflow scheduling and specialized hardware manager for inter-core
work coordination (creation, distribution, synchronization, communication).
This capitalizes on hardware microthreading, an architectural approach pre-
viously demonstrated [14, 15, 16] to be successful at tolerating varying laten-
cies on chip, and at providing a simple machine model and powerful prim-
itives in the ISA to control the management of software concurrency over
multiple cores. Apple-CORE has extended D-RISC with new multi-core co-
ordination abilities. The result consists of chip components called Microgrids,
whose cores can be targeted by software either individually, as a group, or
partitioned at run-time into multiple computing resources. We detail the
Microgrid architecture in section 4.

What distinguishes Microgrid-based CMPs from the traditional Symmet-
ric Multi-Processor (SMP) architecture vision is that each hardware thread
does not appear as a fully-fledged processor from the perspective of oper-
ating systems (OSes) in software. In other SMP approaches, control flow
and work distribution is under the control of software OSes by means of
a timer interrupt, which can preempt any individual hardware thread; no-
tions of software threads and processes merely emerge as artefacts of the
software OS’s structure. In Microgrids, individual hardware threads are not
preemptible; to gain control of a hardware thread and dispatch work to it,
software instead uses a create instruction in the ISA which triggers a con-
trol signal to the on-chip hardware concurrency manager. The notion of
software thread thus maps one-to-one to hardware threads. Similarly, syn-
chronization and communication are handled by hardware events instead of
the traditional interrupt-based and memory-based management mechanisms
found in other OSes, resulting in orders of magnitude shorter management
latencies (cf. table 4). We review this protocol in section 4.2.

In short, Microgrids capture in hardware the scheduling and control roles
traditionally assigned to operating software. As a consequence, the OS code
is not any more needed on most cores, since application software can now
directly direct concurrency using the proposed ISA extensions. This enables
a simpler core design, which in turn translates into higher utilization and
processing density, i.e. more operations per watt and per transistor. We
outline some of the corresponding empirical results in section 5.

5

3.2. Software strategy and programming interface

The success of the Apple-CORE approach was highly dependent on the
direct exploitation of the hardware concurrency management by application
code. In particular, existing application programming interfaces (APIs) to
control concurrency, e.g. POSIX threads, would be too coarse-grained to
dispatch work composed of only few instructions to hardware threads on
Microgrids. This in turn mandated the direct control of hardware via low-
level primitives in the de facto standard system-level language, that is C,
and their subsequent utilization by application benchmarks.

The Apple-CORE consortium did examine established C language exten-
sions to control Microgrids, for example OpenMP, Cilk [17] or OpenCL [18].
However, prior work was found somewhat inadequate: at the point this
analysis was performed, most existing approaches required either strong
memory coherency, mandatory run-time support in a software operating
system (e.g. for work distribution or memory management) or considered
that concurrent sections can only form “leaves” in a computation call graph
otherwise centered on a sequential processor. Instead, Apple-CORE used
µTC [19, 20, 21] then SL [22] as its system-level interface to the Micro-
grid hardware. These language extensions transparently expose the proposed
hardware protocol for use in application code without additional semantics
or software logic.

The addition of new features in C does not necessarily imply that appli-
cation code must be modified to use them. Indeed, Apple-CORE considered
that it is the task of other compilation tools to either offer higher-level lan-
guage primitives that simplify the use of parallelism, or parallelizing com-
pilers able to extract concurrency from existing sequential code. To demon-
strate this, Apple-CORE also supported two related sub-projects: Microgrid
support in the functional, productivity-oriented language Single-Assignment
C [23] (SAC), and a parallelizing C compiler able to target Microgrids.
The status and achievements of these components has been already pub-
lished [24, 25, 26, 27].

The software strategy largely benefited from the advent of multi-core ar-
chitectures in the last decade, since this recent development has created a
culture around software ecosystems that was favorable to explicit concur-
rency constructs towards new forms of parallelism on chip. One of the main
remaining obstacles was to determine which of the existing services of oper-
ating software could be substituted by hardware processes, and how to adapt

6

Automatically generated

Automatically generated

BENCHMARKS

C code from
computation

kernels

SAC code

C code with
extra constructs

using
microthreading

Binary
executable
code for the

target
architecture

C code with
extra constructs

using
microthreading

Parallelizing
C compiler

SAC
compiler

µTC/SL
Core compiler

Microgrids
(sim &
FPGA)

C code with
microthreading

SAC library
code

existing C
code in the
SAC library

Required C
library and
OS support

Figure 1: The Apple-CORE software deliverables.

the remaining services so that applications using them could still run on Mi-
crogrids. To analyse this aspect, Apple-CORE did not choose to port an
entire existing OS to its proposed architecture, and instead opted for a hy-
brid approach: application-level OS services were ported to run on Microgrid
cores, whereas services based on unportable legacy system code (e.g. precom-
piled device drivers) could be accessed remotely through the on-chip network
(NoC) via lightweight remote procedure calls. The corresponding system
architecture has been published previously [28]; it is inspired from the het-
erogeneous OS integration in the Cray XMT.

The software produced in the Apple-CORE project is summarized in Fig-
ure 1. Next to the system-level compilation and operating software dedicated
to Microgrids, higher-level compilation tools that hide the platform details
to application code were also developed. Finally, to demonstrate the sound-
ness and effectiveness of the approach, existing application benchmarks were
selected and new benchmarks were created across a variety of application
domains. These were then subsequently evaluated on both cycle-accurate
simulators and FPGA prototypes.

4. Architecture components

The Apple-CORE architecture proposes to combine a) RISC cores opti-
mized for latency tolerance with dynamically scheduled HMT, b) hardware
units next to cores to organize software concurrency within and across clus-
ters of neighboring cores, called Microgrids, and c) a common NoC protocol
to assign workloads to different regions of a Microgrid, different Microgrids

7

MEMORY

MEMORY I/O

ACTIVE
MESSAGES

DECODE & REGADDR

IRF

ALU

LSU

FETCH & SWITCH

L1D & MCU

FRF

ALU
(async)

GPIO

L1I

WB

TMU &
SCHEDULER

READ & ISSUE

FPU
(async)

TT & FT NCU

(a) Core micro-architecture.

10 9 6 5

11 8 7 4

12 13 2 3

15 14 1 0

26 25 22 21

27 24 23 20

28 29 18 19

31 30 17 16

L2 L2

L2L2

COMA DIRECTORY

L2 L2

L2L2

R R R R

R R R R R

R

RRRRR

(b) Microgrid of 32 cores.

Figure 2: Micro-architectural components.

on chip, or to other core types in an heterogeneous design. The design
can be combined with various memory systems, although Apple-CORE also
proposes a custom distributed cache network with a diffusion protocol that
ensures evicted lines are kept close to their point of last use on chip.

4.1. Core micro-architecture

The core design, illustrated in Figure 2a, is derived from a 6-stage, single-
issue, in-order RISC pipeline:

• the register file is extended as synchronizing storage, where each reg-
ister has a dataflow state which indicate whether it contains data
(full/empty) or is waiting for an asynchronous operation to complete;

• upon issuing an instruction that requires more than one cycle to com-
plete, or whose input operands are not full, the waiting state is written
back to the output operand and the value is overwritten with the iden-
tity of the issuing thread. This way, the thread can be put back on the
schedule queue when its dependency becomes available. Meanwhile,
further instructions in the pipeline can continue;

• the L1-D cache is modified so that loads are issued to memory asyn-
chronously, constructing in the line’s storage a list of registers to notify
when the load completes;

• the fetch stage is connected to an active thread queue. It reads in-
structions and switch hints from the program counter at the head of
the queue. Switch hints force a switch at every instruction that may
suspend the current thread, and are ignored if only one thread is active;

8

Unit Description
Scheduler Wakes up threads upon writes to waiting registers or

L1-I load completions
Thread Control Unit (TCU) Performs bulk thread creation and logical index dis-

tribution
Register Allocation Unit (RAU) Allocates and deallocates register ranges dynamically
Network Control Unit (NCU) Receives and sends active messages and responses on

the NoC

Table 1: Logical sub-units in the TMU.

Event category Parameters
context allocation minimum/maximum number of cores
bulk creation allocated context identifier, common PC, common reg-

ister window layout, overlap factor, logical thread in-
dex range

request for bulk synchronization context identifier, network address of remote register
to write to upon termination

remote register access context identifier, relative address of register

Table 2: Control events handled by the TMU.

State Update events
Program counters Bulk creation, branches
Mappings from logical register windows
to the register file

Bulk creation

Logical index ranges Bulk creation
Bulk synchronizers Bulk creation, bulk synchronization

Table 3: Private state maintained by the TMU.
This state is maintained in dedicated hardware structures close to the TMU.

• each thread is associated with a configurable logical window in the reg-
ister file, including a configurable number of registers per thread ; the
decode stage computes the absolute register address for the read stage.

As the register files only require five ports, more registers can be provi-
sioned, and thus more hardware thread contexts, for the same area budget
as a smaller number of registers in a wide-issue core. The reference config-
uration uses 256 thread contexts and 1024 registers, for a minimum of 32
threads with a full logical register window and a maximum of 256 threads
using 4 registers each.

9

Event Cost on software
critical path

Extra latency in asynchronous hardware
process

context allocation 1 pipeline cycle NoC round-trip to Microgrid cluster + 2
network cycles per core effectively targeted

context configuration 1-4 pipeline cycle NoC single trip + 1-4 network cycle at first
core in target cluster

bulk creation 1 pipeline cycle NoC single trip + 2 network cycles per core
in cluster (created threads are immediately
schedulable in the pipeline of each core)

request for bulk syn-
chronization

1 pipeline cycle NoC round-trip + time to termination of
target thread(s)

remote register access 1 pipeline cycle NoC single or round-trip + 1 network cycle

Table 4: Concurrency management operation latencies.

4.2. Core clusters and hardware concurrency management

Each core is equipped with a Thread Management Unit (TMU, table 1).
The TMU is responsible for the local scheduling of threads, and the TMUs
of adjacent cores coordinate to offer automated multi-core concurrency man-
agement. TMUs accept control events either locally from ISA extensions, or
from the NoC. The main events are listed in table 2:

• context allocation, which reserves execution resources (PC, registers,
bulk synchronizers) across one or multiple cores with a single request;

• bulk creation, which starts the autonomous, asynchronous creation of
multiple logical threads over a previously allocated context;

• bulk synchronization, which instructs the TMU to notify the thread
issuing the bulk synchronization upon completion of all threads bound
to a previously allocated context;

• remote register access, for non-blocking point-to-point communication
and broadcasts. Remote writes may wake up thread(s) waiting on the
written register(s).

Core clusters for context allocation are identified by a simple, generic
addressing scheme: each cluster address is a value 2P + S, where P = cS
is the address of the first core in the cluster and S = 2M is the cluster size.
Requests for context allocation, bulk creation and synchronization and reg-
ister broadcasts are sent to the first core in the cluster using the NoC, then
negotiated asynchronously across TMUs from the first core based on the size
field. Inter-TMU coordination occurs using a linear, point-to-point distribu-
tion network (DN). The DN follows a space filling curve to maximize locality
at any cluster start position and size (Figure 2b). Although Apple-CORE

10

uses a dedicated separate physical network, the DN can be implemented as
a virtual network over a single common NoC using QoS to guarantee latency
independence of concurrency management between regions of the chip.

4.3. Memory architecture

The proposed design is distinct from most other CMP architectures in
that work distribution and synchronization is coordinated by mechanisms
distinct from memory. This allows the chip integrator to use Microgrids with
various memory systems. However, the design is optimized to tolerate mem-
ory latencies using multiple, asynchronous in-flight operations, and is thus
best used with memory systems that support split-phase transactions and/or
request pipelining. To demonstrate this, Apple-CORE has also developed an
on-chip memory network implementing a custom distributed cache protocol
(also illustrated in Figure 2b): memory stores are effected at the local L2
cache without invalidating other copies, and are only propagated and merged
with other copies upon explicit barriers or bulk creation or synchronization
of threads. This protocol is derived from [29, 30]: from the perspective of
programs, it appears as a single shared memory with consistency resolved at
concurrency management events.

4.4. Programming methodology

The TMU control events are exposed via ISA extensions and can be used
from any thread, ensuring that concurrency control can be truly distributed
across application components co-located on the chip. The intent is to en-
able capturing these concurrency semantics in various programming models,
e.g. the bulk-synchronous parallelism (BSP [31]) and task parallelism con-
structs of OpenMP [7] and OpenCL [18], although the Apple-CORE project
did not explicitly explore these opportunities yet.

As we discussed in section 3, Apple-CORE provides a single set of exten-
sion primitives to the C language, called SVP, intended for use by higher-level
code generators or language libraries. It has been concretely implemented in
the µTC and SL extensions to C. SVP features:

• defining thread programs, analogous to OpenCL’s “kernels” but allowed
to invoke any valid, separately compiled C function for truly general-
purpose computations;

• declaring and using dataflow channels, which are translated to physical
register sharing to implement the producer-consumer pattern (reads
from empty block, writes to waiting by another thread wakes up);

11

• performing bulk creation and synchronization of families of logical
threads, each identified by a logical index in a configurable range. This
can be used to implement both the BSP pattern and nested fork-join
parallelism found in Cilk [32] and functional languages.

For reductions, within one core multiple threads can share a single register
and all reducing instructions using that register as both input and output
operand will serialize automatically using the dataflow scheduler. Across
cores, parallel prefix sums [33] or standard distributed reductions can be
used for scalable throughput.

Furthermore, by encouraging an overall program structure with forward-
only chains of dataflow channels, SVP favors program styles that are serial-
izable and can be run deterministically using any cluster size, down to only
one thread on one core. For system and library code, non-deterministic con-
structs are also possible. In particular, priviledged code can construct any
point-to-point communication pattern using remote register accesses. For
mutual exclusion and atomic state updates, programs can either send state
updates as a remote thread creation to a single, previously-allocated execu-
tion context where all bulk creations are automatically serialized by the TMU
(Dijkstra’s “secretary” pattern [34, p. 135]), or they can send state updates
to a previously agreed core cluster sharing common coherent caches (e.g. a
single L2 cache in the proposed memory architecture) and then negotiate
atomicity locally using standard memory transactions.

To summarize, SVP was designed as a set of acceleration primitives for op-
erating systems and general-purpose concurrency management frameworks.
Its “killer feature” is perhaps that the time overhead of thread creation and
point-to-point communication is driven down to a few pipeline cycles (ta-
ble 4), cheaper than most C procedure calls. Moreover, this overhead can
be made nearly invisible to computations as it can overlap in the TMU with
instructions from other threads in the pipeline.

5. Realization and evaluation

For evaluation, Apple-CORE has defined two platforms.
To confirm the realizability of D-RISC in hardware and estimate its actual

implementation costs, a single-core but multithreaded FPGA prototype was
developed, called UTLEON3 [35, 36, 37]. This provided SVP extensions
over the 32-bit SPARC ISA, 1-4K instruction (I) and data (D) caches, 512
registers, 16 bulk synchronizers and 128 thread contexts.

12

Furthermore, to exercise the software tool chain and provide insight about
the scalability of the design, a simulation-based platform was also defined pro-
viding a 128-core Microgrid cluster. Each core runs a 64-bit Alpha-derived
ISA, has a 2KiB L1-I cache, 4KiB L1-D cache, 1024 registers, 32 bulk syn-
chronizers and 256 thread contexts.

In the multi-core configuration, asynchronous FPUs are shared between
adjacent cores. The corresponding distributed cache network has 32 L2
caches of 128KiB each, connected in 4 rings themselves connected to a single
top-level ring with 4 DDR3-1600 memory channels.

In both platforms, the Microgrid hardware shares the NoC with a small
companion core able to run OS services that cannot be implemented directly
on the Microgrid cores, as discussed in [28]. Virtual memory is implemented
using a MMU shared by all cores, so that all threads appear to run in the
same logical address space. Some Microgrid cores have a direct asynchronous
interface to off-chip I/O which supports multiple in-flight split-phase trans-
actions [38], to maximize bandwidth in streaming applications.

The multi-core chip was implemented as a model in the MGSim [39, 40]
framework. MGSim provides a discrete event, cycle-accurate, full-system
simulation kernel where all component behaviors down to individual pipeline
stages, register file ports, arbitrators, functional units, FIFOs, DDR con-
troller, etc. have their own detailed model. This enables a slightly higher
level, and thus faster simulation than a circuit-level simulation, while preserv-
ing the timing accuracy of thread scheduling and TMU operations relative
to the pipeline cycle time. This simulation-based platform receives the focus
of the remainder of this section.

5.1. Area and timing estimates

The area and access time requirements of the reference configuration have
been evaluated using CACTI [41]. Using conservative technology parameters
at 45nm CMOS, the Microgrid occupies an estimated 120mm2, not counting
the physical links and routers on the NoC and memory system (Figure 3).
This can be compared e.g. to the Intel P8600 chip (Core 2 Duo) which pro-
visions 3MB L2 cache and 2 cores on 107mm2 using the same gate size.
The register files have the longest access time at .4ns, and with two subse-
quent accesses at the read and writeback stages this constrains the maximum
core frequency at 1.25GHz. Experiments subsequently used 1GHz clocks for
pipelines.

13

��������	

�����	

�������������

��������������

�������������������

��������	
��

���	��������	�����	���

����	��������	�����	���

�������	�
�

����	����������	���������	 �

!"#�	��

$����%	���������	��
&����'�����	(�

Figure 3: Chip area breakdown: entire grid (left), per core (right).

5.2. Software environment

Apple-CORE has produced a C language implementation based on the
GNU C compiler (GCC), and a run-time environment based on FreeBSD [42].
GCC’s Alpha back-end was extended to support the SVP primitives. The
run-time environment provides access to the entire C library from any core
on a Microgrid cluster, performing memory management locally on each
core and delegating services (e.g. I/O) that operate on system structures
to a reserved sub-cluster or the integrated companion core. Instead of us-
ing memory-based protection, isolation between processes is achieved using
capabilities [43], similarly to [44]. As we outlined in section 3, this infras-
tructure has fostered the separate development of a parallelizing C compiler
targeting SVP [26, 27] and a SVP back-end to the array-oriented, functional
productivity language SAC [23, 25].

5.3. Performance and scalability

The performance benefits are two dimensional: the increase efficiency per
core due to the interleaving of multiple threads, and the increased throughput
enabled by multi-core execution. We illustrate this in Figure 4. As the
left side diagram shows, the pipeline occupation increases as the number of
threads per core increases for the selected numeric benchmarks, up to nearly
full utilization in numeric code from 8 threads per core. This result shows
also that a naive quicksort, in particular, performs poorly due to its mostly
sequential pivot selection and the absence of branch prediction in hardware;
merge sort instead exhibits more concurrency and benefits from multiple
threads. The right side diagram shows the scalability of the same group of
benchmarks as the number of cores used increases (plotted with different line
styles).

14

1	 2	 4	 8	 16	
0	

0.1	

0.2	

0.3	

0.4	

0.5	

0.6	

0.7	

0.8	

0.9	

1	

A
ve
ra
ge
	 IP

C	
pe

r	
Co

re
	

#hardware	 threads	 per	 core	

FFT_1	 FFT_2	

Grey	 Zoom	

Convolu<on	 Merge-‐Sort	

QuickSort	

(a) Pipeline utilization per core

1	 2	 4	 8	 16	
1	

2	

3	

4	

5	

6	

7	

8	

Sp
ee
dU

p	

#hardware	 threads	 per	 core	

Grey	

Zoom	

Convolu6on	

FFT_2	

Merge-‐Sort	

(b) Scalability

Figure 4: Orthogonal benefits of multithreaded and multi-core execution.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 5000 10000 15000 20000 25000 30000 35000 40000

nu
m

be
r o

f i
ns

tru
ct

io
ns

 p
er

 th
re

ad

logical thread index

 1e-05

 0.0001

 0.001

 0.01

 0.1

 0 10 20 30 40 50 60 70

tim
e

to
 re

su
lt

(s
ec

on
ds

)

number of cores used

baseline: sequential code on legacy platform
1 th/core, even
2 th/core, even
4 th/core, even
8 th/core, even

16 th/core, even
max th/core, even

1 th/core, round-robin
2 th/core, round-robin
4 th/core, round-robin
8 th/core, round-robin

16 th/core, round-robin
max th/core, round-robin

 0

 10

 20

 30

 40

 50

 60

 0 10 20 30 40 50 60 70

in
st

ru
ct

io
ns

 p
er

 c
yc

le

number of cores used

1 th/core, even
2 th/core, even
4 th/core, even
8 th/core, even

16 th/core, even
max th/core, even

1 th/core, round-robin
2 th/core, round-robin
4 th/core, round-robin
8 th/core, round-robin

16 th/core, round-robin
max th/core, round-robin

Figure 5: Example heterogeneous workload: Mandelbrot set approximation.

Figure 5 illustrates the computational density and latency tolerance for
FPU operations. This heterogeneous compute-bound workload of 40k im-
balanced threads (top in figure) has been run over Microgrid sub-clusters
of different sizes, using two distribution strategies. Sequential code on the
Intel P8600 at 2.4GHz was used as baseline. Using an even distribution and

15

� � � � �� �� ��
�

���

���

���

���

�

���

���

	
����������

��������

	��������������

�
��

�
��
�
��
�
�
�
��
��
�

���
��

�
�
�
�
�
�

(a) Scalability of a N/P reduction of 64k
floating-point values.

� ���� ���� ���� ����� ����� ����� �����

�

��

��

��

	�

��

��

������������ �

��������������

�����������

��������	

(b) Speedup of various parallel reduction
strategies on 64 cores.

Figure 6: Performance of parallel reductions.

one thread/core, the performance exceeds the baseline at 32 cores. Using a
round-robin distribution to spread the load over the cluster, at 1 thread/core
the baseline is exceeded at 8 cores. At 16 threads per core and a round-robin
distribution, the baseline is exceeded at 2 cores. As per section 5.1 above,
this implies the baseline is exceeded at 20× smaller area budget and less
than half the frequency. The round-robin distribution with 16 threads per
core further scales nearly linearly with full pipeline utilization up to 64 cores
(right in figure).

Figures 6a and 6b illustrate the scalability for parallel reductions. In
Figure 6a, sub-vectors are first summed locally on each core, then the par-
tial sums are summed on one core. The baseline performance (same chip
as above) is matched from 32 Microgrid cores onwards. In Figure 6b, mul-
tiple reduction strategies are used on a single sub-cluster of 64 cores, and
compared (speedup) against the performance of the sequential version on 1
core. The parallel prefix sum [33] scales regularly with the input size but is
disadvantaged as it executes more instructions. The best strategy (N/CP)
is to run multiple local reductions on each core in different threads and then
combine the partial sums on one core.

Figure 7 illustrates the scalability for a scientific kernel using different
programming interfaces. Using hand-coded C or assembly code, the baseline
is matched from 4 cores. With code automatically parallelized from C and a
software-based dynamic loop scheduler, the baseline is matched from 8 cores.
The higher-level SAC code has a large run-time overhead, but still benefits
from multi-core scalability. As can be seen on the right side, from 32 cores

16

� � � � �� �� ��

�

�����

�����

�����

�����

�����

�����

	����

������

�������������

�
�

��������������

 �������

!"�����#�������"���

!
��
�
��
��
�
��

� �� �� �� �� �� �� 	�

�

�

��

��

��

��

������

�������������

�
�

��������������

 �������

!"�����#�������"���

$�
�

Figure 7: Performance of the equation of state fragment.

��� ��� ��� ��� 	
����� ���� ��� ���� ��� �����

�

��

���

����

������� ������� ������� �������� ��!" �������� ��#

#�
��
$�

�%
$&
'(�

)�
&�
*�
+

Figure 8: Throughput for one stream on one core.

the memory throughput approaches the external bandwidth of the chip and
the workload becomes memory-bound, preventing extra speedup.

5.4. Example throughput application: cryptography

In [45, 46], the authors introduce NPCryptBench, a benchmark suite
to evaluate network processors. We have run unoptimized code for these
ciphers and hash algorithms on the Apple-CORE chip. First the throughput
of the unoptimized code for one flow on one core is compared against the
unoptimized throughput on the Intel IXP chips ([45, fig. 4], [46, fig. 3]).
Two Microgrid codes are used, one purely sequential and one where the
inner loop is parallelized. As the results in Figure 8 show, the Microgrid
hardware provides a throughput advantage for the more complex AES, SEAL
and Blowfish ciphers, whereas the dedicated hardware hash units of the IXP
accelerate MD5 and SHA-1. For the other kernels, the Microgrid hardware is
slower: with RC5, RC6 and IDEA, a carried dependency serializes execution

17

������ ������� 	������
������ ��������
�

����

����

���

	���

����

����
���

�
�
��

�
	
�

�
��
�

�

�
�

������ ������� 	������
������ ��������
�

���

����

����

����
���

�
�
��

�
	
�

�
��
�

�

�
�

������ ������� 	������
������ ��������
�

���

	��

���

��

����

����

�	��
����

�
�
��

�
	
�

�
��
�

�

�
�

������ ������� 	������
������ ��������
�

���

	��

���

��

����

����

�	��

����
���

�
�
��

�
	
�

�
��
�

�

�
�

������ ������� 	������
������ ��������
�

���

	��

���

��

����

����

�	��

����
���

�
�
��

�
	
�

�
��
�

�

�
�

������ ������� 	������
������ ��������
�

����

����

���

	���

����

����
�����

�
�
��

�
	
�

�
��
�

�

�
�

(a) Combined throughput for 1-8,16 streams per core on 1-16 cores (1-256 streams total).
IXP2800 performance in leftmost 3 bars at each core group.

������ ������� 	������
������ ��������
��

��

��
���

�
�
�
�
�
	

��
�
�
�
��
�
�

������ ������� 	������
������ ��������
�

��

��

��
���

�
�
�
�
�
	

��
�
�
�
��
�
�

������ ������� 	������
������ ��������
��

��

��
����

�
�
�
�
�
	

��
�
�
�
��
�
�

������ ������� 	������
������ ��������
��

��

��
���

�
�
�
�
�
	

��
�
�
�
��
�
�

������ ������� 	������
������ ��������
�

��

��

��
���

�
�
�
�
�
	

��
�
�
�
��
�
�

������ ������� 	������
������ ��������
��

��

��
���	�

�
�
�
�
�
	

��
�
�
�
��
�
�

(b) Pipeline under-utilization.

Figure 9: Performance of cryptographic kernels.

and minimizes latency tolerance. With RC4, the modified state at each
cipher block must be made consistent in memory before the next thread
can proceed, which also partly sequentializes execution. Further throughput
deviation from the IXP should be considered in the light of the frequency
difference (1.4GHz for the IXP vs. 1GHz for the Microgrid) and the fact the
Microgrid hardware was not designed specifically towards cryptography.

Figure 9a shows the scalability of the most popular cryptographic kernels,
using the purely sequential, unoptimized code for each stream on the Micro-
grid and the Level-2 optimized code for the IXP2800 ([45, fig. 6], [46, fig. 8]).
For each sub-cluster size, increasing the number of flows per core increases
utilization (Figure 9b) and thus overall throughput. Throughput is further-
more reliably scalable up to 16 cores. With RC4 and 64 flows on 16 cores
the workload reaches the memory bandwidth of the chip; with additional
flows, contention on the internal memory network appears, the utilization is
reduced slightly and so is the throughput. The througput then stabilizes at
96 flows around 1.6Gbps.

18

6. Discussion and future work

6.1. Related work

As we outlined in sections 3 and 4, the proposed design diverges from
traditional general-purpose SMPs in that preemption and branch predicition
are replaced by hardware thread management and groups of threads created
and synchronized in bulk. Meanwhile, it does not fit the current landscape
of “compute accelerators” either: each D-RISC core in Microgrids is fully
general-purpose and application code needs not be separated into its principal
skeleton and its “leaf” computation kernels.

The two platforms that were contemporary to Apple-CORE and received
most attention at the time were perhaps Intel’s Single-Chip Cloud Com-
puter [47] (SCC), a research platform, and Tilera’s TILE64 [48], a product
offering for network applications.

Both integrate more general-purpose cores on one chip than contemporary
multi-core product offerings: 48 for the SCC, 64 for TILE64. All cores are
connected to a common network-on-chip. On both chips, each core consists
of a traditional processor architecture—the MIPS pipeline for TILE64, the
P54C pipeline for the SCC—and a configurable mapping from cores to exter-
nal memory able to provide the illusion of arbitrarily large private memory
to each core.

For I/O, connectivity is provided on the TILE64 by direct access to ex-
ternal I/O devices on each core via dedicated I/O links on the NoC; on the
SCC, the approach is more similar to Apple-CORE: the NoC is connected
to an external service processor implemented on FPGA which forwards I/O
requests from the SCC cores to a host system.

For parallel execution, TILE64 and SCC only support one hardware
thread per core. Both offer preemption to time and space schedulers in
software as the means to multiplex multiple software activities, and are thus
less equipped to deal with fine-grained heterogeneous concurrency than the
Apple-CORE proposal.

For communication, TILE64 has the most comprehensive offering: it sup-
ports 4 hardware-supported asynchronous channels to any other cores, a sin-
gle channel to a configurable, static set of peers and two dedicated channels
to external I/O devices per core. Alternatively, cores can also implement
virtual channels over a coherent, virtually shared memory implemented over
another set of NoC links, although the communication latency is then higher.

19

This diversity of communication means offer more optimization opportuni-
ties for concurrent software, but at the expense of a largely more complex
machine model for the implementers of operating software. In contrast the
SCC provides a single, much simpler memory-mapped interface for arbi-
trary point-to-point communication between cores, but the lack of dataflow
synchronization in each core means that multi-core concurrency manage-
ment rely on expensive network round-trips for every coordination step. The
Apple-CORE proposal can be described as a middle point: it offers two
virtual networks on chip, one for global distribution and one for local distri-
bution, and a single protocol for simplicity, but it also equips cores with extra
hardware for low-latency synchronization and multi-core work distribution.

6.2. Achievements and follow-up research

The infrastructure developed by Apple-CORE, namely platforms and as-
sociated software tool chains, have been released publicly towards third-party
scrutiny and reuse2. The consortium partnerships have been extended past
the end of the project, with the intent to continue collaboration in the promo-
tion and development of the platform. Current follow-up research is focused
on developing abstract resource models to support the dynamic mapping
of varying, heterogeneous application workloads onto the available resources
on chip. Once further results confirm confidence in the field that the pro-
posed platform is a sound approach to multi-core system management, the
consortium intends to mobilize towards more hardware realizations.

6.3. Evaluation challenges and continued work

The results of Apple-CORE have demonstrated the potential of general-
purpose, fine-grained concurrency in various simple scenarios. Unfortunately,
the project has also struggled to carry out more extensive evaluations. In-
deed, most current benchmark suites towards architecture design focus on the
performance of single programs (e.g. SPEC) and thus fall out of the scope
of the proposed design. Larger benchmark suites that test multi-application
scenarios (e.g. CloudSuite [49]) in turn assume the existence of physical hard-
ware able to run datacenter-grade workloads, and are thus inadequate for ar-
chitecture research where experiments are performed in detailed simulations
running at a few hundred MIPS.

2http://www.apple-core.info/ and http://svp-home.org/

20

http://www.apple-core.info/
http://svp-home.org/

To sustain further activity in this field, in particular the analysis of chip
behavior under multiple scales of concurrency, both lighter multi-application
benchmarks and faster simulations must be developed. The Apple-CORE
consortium is committed to continue further research in this direction. Two
strategies are currently planned. Towards increasing the evaluation space,
the platform will be extended to provide more compatibility with existing
application code, so as to increase the number of benchmark applications that
can be used for evaluation. Simultaneously, to increase the evaluation scale
in application complexity, the SVP interface will be emulated in software on
existing multi-core platforms, such as Intel’s SCC or Tilera’s TILE64. This
will enable the evaluation of the Apple-CORE software infrastructure for
existing production-grade applications.

7. Conclusion

This article has sought to motivate a renewed effort in microprocessor
architecture design towards many-core chips with smaller, more efficient cores
using hardware multi-threading and hardware acceleration for concurrency
management. It further described the architecture developed in the Apple-
CORE project as a step in this direction, and illustrated its performance
using several benchmarks.

As the results show, traditionally sequential workloads can be parallelized
in presence of fine-grained multithreading and hardware-supported concur-
rency management on chip. The proposed hardware achieves higher through-
put per unit of area and per clock cycle than contemporary state-of-the-art
components. Its hardware management protocol in turn offers reliable multi-
core throughput scalability up to the memory bandwidth.

Follow-up work will focus on broadening the scope of the evaluation of
the platform, towards larger-scale and more heterogeneous workloads. This
work will in turn favor increasing compatibility between the proposed plat-
form and existing software environments. The international consortium that
composed Apple-CORE, key to the success of this project, intends to extend
this partnership beyond its current achievements and towards the hardware
realization of the proposed innovation.

Acknowledgements

This research was supported by the European Union under grant number
FP7-215216 (Apple-CORE).

21

References

[1] R. Ronen, A. Mendelson, K. Lai, S.-L. Lu, F. Pollack, J. Shen, Coming
challenges in microarchitecture and architecture, Proceedings of the IEEE 89
(2001) 325–340.

[2] L. Spracklen, S. G. Abraham, Chip multithreading: opportunities and chal-
lenges, in: Proc 11th International Symposium on High-Performance Com-
puter Architecture, HPCA’05, IEEE, 2005, pp. 248–252.

[3] H. Sutter, The free lunch is over: A fundamental turn toward concurrency in
software, Dr. Dobb’s Journal 30 (2005).

[4] R. Poss, M. Lankamp, Q. Yang, J. Fu, M. W. van Tol, C. Jesshope, Apple-
CORE: Microgrids of SVP cores (invited paper), in: S. Niar (Ed.), Proc. 15th
Euromicro Conference on Digital System Design (DSD 2012), IEEE Computer
Society, 2012.

[5] W. A. Wulf, S. A. McKee, Hitting the memory wall: implications of the
obvious, SIGARCH Comput. Archit. News 23 (1995) 20–24.

[6] I. Bell, N. Hasasneh, C. Jesshope, Supporting microthread scheduling and
synchronisation in CMPs, International Journal of Parallel Programming 34
(2006) 343–381.

[7] OpenMP Architecture Review Board, OpenMP application program inter-
face, version 3.0, 2008.

[8] B. Smith, Architecture and applications of the HEP multiprocessor computer
system, Proc. SPIE Int. Soc. Opt. Eng.; (United States) 298 (1981) 241–248.

[9] R. H. Halstead, Jr., T. Fujita, MASA: a multithreaded processor architecture
for parallel symbolic computing, SIGARCH Comput. Archit. News 16 (1988)
443–451.

[10] R. S. Nikhil, Arvind, Can dataflow subsume von Neumann computing?,
SIGARCH Comput. Archit. News 17 (1989) 262–272.

[11] D. May, R. Shepherd, Occam and the transputer, in: Advances in Petri Nets
1989, volume 424 of Lecture Notes in Computer Science, Springer Berlin /
Heidelberg, 1990, pp. 329–353.

22

[12] D. E. Culler, A. Sah, K. E. Schauser, T. von Eicken, J. Wawrzynek, Fine-grain
parallelism with minimal hardware support: a compiler-controlled threaded
abstract machine, in: ASPLOS-IV: Proc. 4th international conference on Ar-
chitectural support for programming languages and operating systems, ACM,
New York, NY, USA, 1991, pp. 164–175.

[13] A. Bolychevsky, C. Jesshope, V. Muchnick, Dynamic scheduling in RISC ar-
chitectures, IEE Proceedings - Computers and Digital Techniques 143 (1996)
309–317.

[14] K. Bousias, N. Hasasneh, C. Jesshope, Instruction level parallelism through
microthreading – a scalable approach to chip multiprocessors, The Computer
Journal 49 (2006) 211–233.

[15] C. Jesshope, M. Lankamp, L. Zhang, The Implementation of an SVP
Many-core Processor and the Evaluation of its Memory Architecture, ACM
SIGARCH Computer Architecture News 37 (2009) 38–45.

[16] K. Bousias, L. Guang, C. Jesshope, M. Lankamp, Implementation and eval-
uation of a microthread architecture, Journal of Systems Architecture 55
(2008) 149–161.

[17] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H. Randall,
Y. Zhou, Cilk: an efficient multithreaded runtime system, SIGPLAN Not. 30
(1995) 207–216.

[18] Khronos OpenCL Working Group, The OpenCL specification, version 1.0.43,
2009.

[19] C. R. Jesshope, µTC - an intermediate language for programming chip multi-
processors, in: C. Jesshope, C. Egan (Eds.), Advances in Computer Systems
Architecture, volume 4186 of Lecture Notes in Computer Science, Springer
Berlin / Heidelberg, 2006, pp. 147–160.

[20] T. Bernard, C. Jesshope, P. Knijnenburg, Strategies for compiling muTC to
novel chip multiprocessors, in: S. Vassiliadis, M. Berekovic, T. Hämäläinen
(Eds.), Embedded Computer Systems: Architectures, Modeling, and Simula-
tion, volume 4599 of Lecture Notes in Computer Science, Springer Berlin /
Heidelberg, 2007, pp. 127–138.

[21] T. Bernard, C. Grelck, C. Jesshope, On the Compilation of a Language
for General Concurrent Target Architectures, Parallel Processing Letters 20
(2010).

23

[22] R. Poss, SL—a “quick and dirty” but working intermediate language for SVP
systems, Technical Report arXiv:1208.4572v1 [cs.PL], University of Amster-
dam, 2012.

[23] C. Grelck, S.-B. Scholz, SAC: a functional array language for efficient multi-
threaded execution, International Journal of Parallel Programming 34 (2006)
383–427.

[24] S. Herhut, C. Joslin, S.-B. Scholz, C. Grelck, Truly nested data parallelism:
Compiling SaC for the Microgrid architecture, in: M. Morazán (Ed.), Proc.
21st International Symposium on Implementation and Application of Func-
tional Languages (IFL’09), Technical Report SHU-TR-CS-2009-09-1, Seton
Hall University, Department of Mathematics and Computer Science, South
Orange, USA, 2009, pp. 141–153.

[25] C. Grelck, S. Herhut, C. Jesshope, C. Joslin, M. Lankamp, S.-B. Scholz,
A. Shafarenko, Compiling the Functional Data-Parallel Language SaC for Mi-
crogrids of Self-Adaptive Virtual Processors, in: 14th Workshop on Compilers
for Parallel Computing (CPC’09), IBM Research Center, Zurich, Switzerland.

[26] D. Saougkos, D. Evgenidou, G. Manis, Specifying loop transformations for
C2µTC source-ro-source compiler, in: Proc. of 14th Workshop on Compilers
for Parallel Computing (CPC’09), Zürich, Switzerland, IBM Research Center,
2009.

[27] D. Saougkos, G. Manis, Run-time scheduling with the C2uTC parallelizing
compiler, in: 2nd Workshop on Parallel Programming and Run-Time Man-
agement Techniques for Many–Core Architectures, in Workshop Proceedings
of the 24th Conference on Computing Systems (ARCS 2011), Lecture Notes
in Computer Science, Springer, 2011, pp. 151–157.

[28] R. Poss, M. Lankamp, M. I. Uddin, J. Sýkora, L. Kafka, Heterogeneous
integration to simplify many-core architecture simulations, in: Proc. 2012
Workshop on Rapid Simulation and Performance Evaluation: Methods and
Tools, RAPIDO ’12, ACM, 2012, pp. 17–24.

[29] L. Zhang, C. R. Jesshope, On-Chip COMA Cache-Coherence Protocol for
Microgrids of Microthreaded Cores, in: Bouge, et al. (Eds.), Euro-Par Work-
shops, volume 4854 of LNCS, Springer, 2007, pp. 38–48.

[30] T. D.Vu, L. Zhang, C. R. Jesshope, The verification of the on-chip COMA
cache coherence protocol, in: International Conference on Algebraic Method-
ology and Software Technology, pp. 413–429.

24

[31] L. G. Valiant, A bridging model for parallel computation, Commun. ACM
33 (1990) 103–111.

[32] C. E. Leiserson, The Cilk++ concurrency platform, in: DAC ’09: Proceedings
of the 46th Annual Design Automation Conference, ACM, New York, NY,
USA, 2009, pp. 522–527.

[33] R. E. Ladner, M. J. Fischer, Parallel prefix computation, J. ACM 27 (1980)
831–838.

[34] E. W. Dijkstra, Hierarchical ordering of sequential processes, Acta Informat-
ica 1 (1971) 115–138.

[35] M. Danek, L. Kafka, L. Kohout, J. Sykora, Instruction set extensions for
multi-threading in LEON3, in: Z. K. et al. (Ed.), Proc. 13th IEEE Symposium
on Design and Diagnostics of Electronic Circuits and Systems (DDECS’2010),
IEEE, 2010, pp. 237–242.

[36] J. Sykora, L. Kafka, M. Danek, L. Kohout, Analysis of execution efficiency
in the microthreaded processor UTLEON3, volume 6566 of Lecture Notes in
Computer Science, Springer, 2011, pp. 110–121.

[37] M. Daněk, L. Kafka, L. Kohout, J. Sýkora, R. Bartosinski, UTLEON3:
Exploring Fine-Grain Multi-Threading in FPGAs, Circuits and Systems,
Springer, 2012.

[38] M. A. Hicks, M. W. van Tol, C. R. Jesshope, Towards Scalable I/O on a
Many-core Architecture, in: International Conference on Embedded Com-
puter Systems: Architectures, MOdeling and Simulation (SAMOS), IEEE,
2010, pp. 341–348.

[39] M. Lankamp, R. Poss, Q. Yang, J. Fu, I. Uddin, C. R. Jesshope, MGSim—
Simulation tools for multi-core processor architectures, Technical Report
arXiv:1302.1390v1 [cs.AR], University of Amsterdam, 2013.

[40] R. Poss, M. Lankamp, Q. Yang, J. Fu, I. Uddin, C. Jesshope, MGSim—
a simulation environment for multi-core research and education, in: Proc.
Intl. Conf. on Embedded Computer Systems: Architectures, MOdeling and
Simulation (SAMOS), IEEE, Samos, Greece, 2013. (to appear).

[41] S. Wilton, N. Jouppi, Cacti: an enhanced cache access and cycle time model,
Solid-State Circuits, IEEE Journal of 31 (1996) 677–688.

25

[42] M. K. McKusick, G. V. Neville-Neil, Design And Implementation Of The
FreeBSD Operating System, Addison Wesley, 2004.

[43] M. W. van Tol, C. R. Jesshope, An operating system strategy for general-
purpose parallel computing on many-core architectures, Advances in Parallel
Computing High Performance Computing: From Grids and Clouds to Exas-
cale (2011) 157–181.

[44] J. S. Chase, H. M. Levy, M. J. Feeley, E. D. Lazowska, Sharing and protection
in a single-address-space operating system, ACM Trans. Comput. Syst. 12
(1994) 271–307.

[45] Z. Tan, C. Lin, H. Yin, B. Li, Optimization and benchmark of cryptographic
algorithms on network processors, IEEE Micro 24 (2004) 55–69.

[46] Y. Yue, C. Lin, Z. Tan, NPCryptBench: a cryptographic benchmark suite for
network processors, SIGARCH Comput. Archit. News 34 (2005) 49–56.

[47] T. G. Mattson, M. Riepen, T. Lehnig, P. Brett, W. Haas, P. Kennedy,
J. Howard, S. Vangal, N. Borkar, G. Ruhl, S. Dighe, The 48-core scc processor:
the programmer’s view, in: Proc. 2010 ACM/IEEE International Conference
for High Performance Computing, Networking, Storage and Analysis, SC’10,
IEEE Computer Society, Washington, DC, USA, 2010, pp. 1–11.

[48] S. Bell, B. Edwards, J. Amann, R. Conlin, K. Joyce, V. Leung, J. MacKay,
M. Reif, L. Bao, J. Brown, M. Mattina, C.-C. Miao, C. Ramey, D. Wentzlaff,
W. Anderson, E. Berger, N. Fairbanks, D. Khan, F. Montenegro, J. Stickney,
J. Zook, TILE64 processor: A 64-core SoC with mesh interconnect, in: IEEE
International Solid-State Circuits Conference, 2008 (ISSCC 2008). Digest of
Technical Papers., IEEE, 2008, pp. 88–598.

[49] M. Ferdman, A. Adileh, O. Kocberber, S. Volos, M. Alisafaee, D. Jevdjic,
C. Kaynak, A. D. Popescu, A. Ailamaki, B. Falsafi, Clearing the clouds: a
study of emerging scale-out workloads on modern hardware, in: Proc. 17th in-
ternational conference on Architectural Support for Programming Languages
and Operating Systems, ASPLOS ’12, ACM, 2012, pp. 37–48.

26

	Introduction
	Context and design motivations
	Outline of the project's strategy
	Contributions to processor architecture: Microgrids
	Software strategy and programming interface

	Architecture components
	Core micro-architecture
	Core clusters and hardware concurrency management
	Memory architecture
	Programming methodology

	Realization and evaluation
	Area and timing estimates
	Software environment
	Performance and scalability
	Example throughput application: cryptography

	Discussion and future work
	Related work
	Achievements and follow-up research
	Evaluation challenges and continued work

	Conclusion

