
Computer Architecture 2012/2013
Assignment 2b

Date: September 25th, 2012
Deadline: October 19th 2012, 23:59

Contents
1 Overview 1

2 Instructions 2

3 Prerequisites 2

4 ALU instructions 2
4.1 Decode + Execute for R instructions 3
4.2 Decode for I and J . 3
4.3 Execute for ALU instructions with format I and J 3
4.4 Testing . 3

5 Summary of submission contents 3

6 Grading 4

1 Overview
Reminder: The purpose of assignment series 2 is to implement the MIPS ISA in
MGSim, so as to be able to run real MIPS code compiled using GCC and the GNU
Binary utilities (assembler+linker). Assignment series 2 will be spread over multiple
weeks, and split into individual assignments 2a, 2b, etc.

The goal of assignment 2b is to:

∙ extend the work started in assignment 2a

∙ add more logic to the pipeline decode stage;

∙ add more logic to the pipeline execute stage;

∙ test the results with simple programs.

1

2 Instructions
∙ For this assignment, you can work in groups of 2.

∙ Read this entire document before you start.

∙ Your must submit a compressed tarball1, named after your last name and student
ID, containing:

– the files that you have produced during the assigment.

– a file report.rst containing your write ups to open questions using
reStructured Text. This must also contain your full name and student ID.
Ensure that report.rst is valid by using rst2html.

∙ Your submission must be sent by e-mail before the deadline, at the e-mail address
given by the assistants. Do not send your submission to the mailing list!

3 Prerequisites
You will need the following:

∙ the Alpha an MIPS cross-utilities and cross-compilers, and the MGSim simulator
compiled for Alpha, as per assignment 1/2a.

∙ the MGSim source code and development environment, as per assignment 2a.

∙ a copy of the following files, which should accompany this document:

File Description
mipsel-cc Script to compile/assemble/link MIPS

code.
minisim.ini Configuration file for MGsim.
arith.c Example micro-program.

Note
The files alpha-cc, mipsel-cc and minisim.ini are different from
assignment 1.

4 ALU instructions
The goal of this task is to implement the extra ALU instructions that you have identified
in assignment 1, question 7 in MGSim. You must also document your changes to
MGSim in textual form in the separate report.

The following progression is strongly suggested.

1A compressed tarball is created with tar -czf xxxx.tgz

2

http://docutils.sourceforge.net/rst.html

4.1 Decode + Execute for R instructions
Start with register-register instructions (MIPS instruction format “R”), to extend the
support for add and sub from assignment 2a.

Focus on ALU instructions (arithmetic, logic, bitwise shift): do not implement
branches (jr) just yet.

4.2 Decode for I and J
Add a new decode logic to identify the instruction formats “I” and “J” (register-immediate
and jump).

Hint
For this you will also need to add new buffers in the decode-read latch.

Note
You do not need to add the new buffers explicitly to the read-execute latch
too, because all buffers from the decode-read latch are already duplicated (and
automatically propagated) to the read-execute latch.

4.3 Execute for ALU instructions with format I and J
Implement the execute logic for ALU instructions using the format “I”. Again, focus
on ALU instructions (addi, ori, lui, slti...), and avoid branches and memory
operations.

Note
Try to focus on the ALU instructions that your test programs actually use.
There are a couple MIPS ALU instructions that are more “difficult” to imple-
ment, namely mult, div, mflo, mfhi, mfcZ, mtcZ but these should not
be used by your test programs.

4.4 Testing
At each step above, make micro-programs to test your progress. Use separate micro-
programs for different categories of instruction.

Think of writing a shell script of Makefile to automate the execution of many test
programs after one another. Suggestion: document yourself about the concepts of “unit
testing” and “regression testing”.

5 Summary of submission contents
Your final submission archive should contain the following files:

∙ report.rst (your report with explanations);

∙ mgsim.patch (your patch file generated with git diff origin/mgsim);

∙ any micro-programs and testing scripts you have created to support your work.

3

6 Grading
Assignment 2b and 2c will be graded together. You will be evaluated as follows:

∙ whether you have implemented decode + execute for all R instructions (1pt);

∙ whether you have implemented decode for R, I, J formats and defined the appro-
priate buffers, and documented the result (1pt);

∙ whether your decode logic properly uses a tree of conditions instead of a linear
sequence of conditions (1pt);

∙ whether you have implemented execute for “I” ALU instructions (1pt);

∙ whether your code is properly structured, indented, documented, either as com-
ments or in the separate report (2pt, will be shared with assignment 2c);

∙ how you can prove or illustrate that all your instructions work using a test suite
or demonstration programs (2pt, will be shared with assignment 2c).

4

	Contents
	1 Overview
	2 Instructions
	3 Prerequisites
	4 ALU instructions
	4.1 Decode + Execute for R instructions
	4.2 Decode for I and J
	4.3 Execute for ALU instructions with format I and J
	4.4 Testing

	5 Summary of submission contents
	6 Grading

