
Computer Architecture 2012/2013
Assignment 2c

Date: September 25th, 2012
Deadline: October 29th 2012, 23:59

Contents
1 Overview 1

2 Instructions 2

3 Prerequisites 2

4 Branches 2

5 Memory operations 3

6 Overall testing 4

7 Summary of submission contents 4

8 Grading 4

1 Overview
Reminder: The purpose of assignment series 2 is to implement the MIPS ISA in
MGSim, so as to be able to run real MIPS code compiled using GCC and the GNU
Binary utilities (assembler+linker). Assignment series 2 will be spread over multiple
weeks, and split into individual assignments 2a, 2b, etc.

The goal of assignment 2c is to:

∙ extend the work started in assignment 2a & 2b

∙ complete the decode logic;

∙ complete the execute logic;

∙ test the results with simple programs.

1

2 Instructions
∙ For this assignment, you can work in groups of 2.

∙ Read this entire document before you start.

∙ Your must submit a compressed tarball1, named after your last name and student
ID, containing:

– the files that you have produced during the assigment.

– a file report.rst containing your write ups to open questions using
reStructured Text. This must also contain your full name and student ID.
Ensure that report.rst is valid by using rst2html.

∙ Your submission must be sent by e-mail before the deadline, at the e-mail address
given by the assistants. Do not send your submission to the mailing list!

3 Prerequisites
You will need the following:

∙ the Alpha an MIPS cross-utilities and cross-compilers, and the MGSim simulator
compiled for Alpha, as per assignment 1/2a/2b.

∙ the MGSim source code and development environment, as per assignment 2a/2b.

∙ a copy of the following files, which should accompany this document:

File Description
mipsel-cc Script to compile/assemble/link MIPS

code.
minisim.ini Configuration file for MGsim.
arith.c Example micro-program.

Note
The files alpha-cc, mipsel-cc and minisim.ini are different from
assignment 1.

4 Branches
To effect a branch in the execute stage, the code in ExecuteInstruction should
look like this:

...
COMMIT { m_output.pc = <new PC value, target of branch>; }
...
return PIPE_FLUSH;

1A compressed tarball is created with tar -czf xxxx.tgz

2

http://docutils.sourceforge.net/rst.html

In other words, whereas “normal” instructions must terminate ExecuteInstruction
with PIPE_CONTINUE, branches must instead return PIPE_FLUSH. Therefore, to
implement branches you first need to introduce a new conditional and have different
paths to return depending on the operation’s function code.

From this point you can perform the following:

1) implement unconditional branches: j, jr, jal

2) implement conditional branches: beq, bne.

Note
bnez and beqz are simply bne and beq with one operand set to $0, which
is the special zero register.

5 Memory operations
MGSim already implements a memory stage and already defines the appropriate buffers
in the execute stage’s output latch. However, the execute stage must configure these
buffer to “activate” the memory stage and make memory operations actually happen.

There are 5 buffers:

∙ size: the size of the memory operation in bytes (eg. 4 for lw, 2 for lh, 1 for
lb);

∙ address: the memory address;

∙ sign_extend: whether to sign-extend the value to the full register width
(true/false, cf the difference between lh and lhu);

∙ Rc: for load instructions, the index of the register where loads must place the
result (0-31, set with MAKE_REGADDR in decode stage as per assignment 2a);

∙ Rcv: for store instructions, the value to store in memory.

The memory stage is activated as soon as size is set to a non-zero value. Then to
distinguish between loads and stores:

∙ if Rcv.m_state is RST_FULL, then the operation is a store;

∙ if Rcv.m_state is RST_INVALID, then the operation is a load.

For example, a 4-byte memory load can be implemented as follows in the execute
stage:

COMMIT {
m_output.address = Rbv + displacement;
m_output.size = 4;
m_output.Rcv.m_state = RST_INVALID;
// NB: m_output.Rc is already set by decode stage

}

For example, a 2-byte memory store with sign extend can be implemented as fol-
lows:

3

COMMIT {
m_output.address = Rbv + displacement;
m_output.size = 2;
m_output.sign_extend = true;
m_output.Rcv = m_input.Rav; // 1st input register value

}

Using this information, implement the remaining memory operations.

6 Overall testing
Check that your resulting simulation works with the example programs from assign-
ment 1: for each program, report the number of simulation cycles needed to complete
the execution with the MIPS ISA.

7 Summary of submission contents
Your final submission archive should contain the following files:

∙ report.rst (your report with explanations);

∙ mgsim.patch (your patch file generated with git diff origin/mgsim);

∙ any micro-programs and testing scripts you have created to support your work.

8 Grading
Assignment 2b and 2c will be graded together. You will be evaluated as follows:

∙ whether you have implemented unconditional branches (.5pt);

∙ whether you have implemented conditional branches (.5pt);

∙ whether you have implemented loads/stores (1pt);

∙ whether your code is properly structured, indented, documented, either as com-
ments or in the separate report (2pt, overlaps with assigment 2b);

∙ how you can prove or illustrate that all your instructions work using the test code
from assignment 1 (2pt, overlaps with assignment 2b).

4

	Contents
	1 Overview
	2 Instructions
	3 Prerequisites
	4 Branches
	5 Memory operations
	6 Overall testing
	7 Summary of submission contents
	8 Grading

