
Computer architecture
Homework week 6

Instructions
Submit by e-mail to the lecturer, as a PDF document with your name and student ID
near the beginning. You can work in groups of 2; however, use different groups than
week 3, 4 and 5. Use the English language. Deadline: Oct 14th, 23:59.

Overview
On most computing systems nowadays the memory hierarchy is organized as a layering
of caches: L1 next to the processor, then L2, then optionally L3, then memory.

However due to chip defects, variation in manufacturing, or outright manufacturer
fraud, the actual characteristics of the caches may not match the advertised charac-
teristics. For example a cache avertised to contain a capacity of 2MiB may only have
1.5MiB available due to a bank defect.

Here comes science! The purpose of this assignment is to devise an empirical
experiment that would estimate practically the usable L1 and L2 cache sizes in your
work computer.

Question 1 (2pt)
Consider in the following C function, which computes for each value in its output B
the average of the “surrounding” points in A:

void convo(int A[N][M], int B[N][M])
{

for (i = 1; i < N-1; ++i)
for (j = 1; j < M-1; ++j)
B[i][j] = (A[i][j]*4 + A[i-1][j] +

A[i+1][j] + A[i][j-1] + A[i][j+1])/8
}

NB: N and M can be defined statically on the compilation command line using eg.
-DN=10 -DM=10.

1) how many memory accesses are performed by each inner iteration? As-
sume all temporary/intermediate results fit into registers.

2) assuming a cache line length of 64 bytes and 32-bit int, how many cache
lines are accessed by each inner iteration? You can assume that M >= 16.

1

Question 3 (5pt)
Consider the following test program:

#include <stdlib.h>
#include <stdio.h>
#include <sys/time.h>

/* .. (place the source of convo here) .. */

int A[N][M] = { 1 }, B[N][M] = { 1 };
int main(int argc, char** argv)
{

int L, i;
struct timeval tv1, tv2;

L = atoi(argv[1]);
gettimeofday(&tv1, 0);
for (i = 0; i < L; ++i)
{

convo(A, B);
convo(B, A);

}
gettimeofday(&tv2, 0);

printf("T = %f seconds\n",
(float)((tv2.tv_usec - tv1.tv_usec)*1e-6

+ (tv2.tv_sec - tv1.tv_sec)));

return 0;
}

Note
N and M can be defined statically on the compilation command line using eg.
-DN=10 -DM=10.

1) Determine the number of memory loads (#R) and stores (#W) performed
by this program, as functions of N, M and L.

2) Select one real computer of your own choosing. Report its advertised
cache sizes.

3) Using this computer, complete the following table experimentally:

N M L so that 10s < T <
50s

#R #W T(min at L
cst)

#R/T #W/T

30 30
100 100
1000 1000
10000 10000

2

Note
To complete each row this table, proceed as follows:

a. compile your program for the given values of N and M.

b. run your program with incrementing values of L until the reported
value of T is larger than 10s (if possible lower than 50s).

c. Fill in this value of L in the table.

d. Using the same values of N, M and L, run the program 3-5 times and
determine the lowest value of T. Fill this in the table.

e. compute the other columns.

Hint
Clever use of a scripting language is recommended.

Note
Avoid using a virtual machine (eg Linux VM on OS X), because this will make
your measurements unclear.

3) Are all rates of #R/T and #W/T equal? Why?

Question 4 (3pt)
1) Using a binary search (keep N = M), determine the problem sizes that

cause significant variations in #R/T and #W/T.

It is recommended (but not required) that you generate a graph to docu-
ment your search.

2) Conclude.

3

	Instructions
	Overview
	Question 1 (2pt)
	Question 3 (5pt)
	Question 4 (3pt)

