
Computer Architecture
R. Poss

Computer Systems Architecture group (UvA)
e-mail: r.c.poss@uva.nl

1woensdag 5 september 2012

What is
”computer architecture”?

2woensdag 5 september 2012

Your ideas and expectations

What is part of “computer architecture”, what is not?

Who are “computer architects”, what is their job?

What is the role of “computer architecture” in science?

Why do you need to know about “computer architecture”?

3woensdag 5 september 2012

Vocabulary
List words/concepts that you want explained during this course:

About the hardware/software interface

About hardware components

About choices in design

About how to be a better programmer

etc. - anything you think is relevant

4woensdag 5 september 2012

An engineering domain

SYSTEMS
ARCHITECTURESOFTWARE ENGINEERING

ELECTRONIC ENGINEERING COMPUTER ARCHITECTURE

metal
oxides

semi-
conductors

CMOS

Processors

Storage

metals Links

Embedded
systems

NMOS
magnetic
substrates

Backplanes

refined matter

petro-chemicals
packaging

Functional
Units

Memories

Caches

electronics logic circuits components platforms

layers of composition and complexity: from parts to whole

Software
programs

Computing
platforms

Algorithms

Frameworks

Operating
software

systems

Networks

Computational
clusters

Personal
computers

Game
consoles

GaA/Si/SiGe/SiC
crystals

You are here

The hidden partner activity:
compilers, operating systems

5woensdag 5 september 2012

Current state of affairs
Power vs chip area:

before: power free, transistors expensive

now: power expensive, transistors cheap

Storage vs computation:

before: computation slow, storage fast

now: storage slow, computation fast

Computation vs storage cost:

before: small storage, ok to compute more to save space (eg compression)

now: large storage, expensive to compute more

6woensdag 5 september 2012

Trends - “the free lunch is over”

http://www.gotw.ca/publications/concurrency-ddj.htm

This is the story of
uniprocessor performance

This is the power wall

This is the memory wall
+ seq. performance wall

7woensdag 5 september 2012

Current state of affairs (cont)
A dramatic change in processor chips:

Memory wall: processors much faster than memories

Power wall: can’t power all transistors lest the chip will fry

Sequential performance wall: more transistors don’t help
sequential performance any more

This course will suggest how we got here, why these problems
are happening and what we can do about it

8woensdag 5 september 2012

Example questions

You are in charge of selecting a processor chip for a new web server.
You have a choice between two chips, a 1-core running at 2GHz and
a 2-core running at 1 GHz. They use the same core micro-
architecture, have nearly the same price. How do you choose? Why?

The web server will support encrypted SSL connections. You can
choose a 4-core processor, 4MB of cache on chip with a cryptographic
accelerator with 4 channels. Or you can choose a 4-core processor
with 8MB of cache on chip but no accelerator. How do you choose?

9woensdag 5 september 2012

Course & organization

10woensdag 5 september 2012

Aims of this course

The aims of this course are:

to introduce the notion of hardware/software
interface and variations in ISA design

to give a thorough understanding of modern
microprocessor design and related issues

to introduce parallelism in computer architecture

to introduce simulators & architecture models

11woensdag 5 september 2012

Bibliography
 The main course text is:

Computer architecture - a quantitative approach, Hennessy & Patterson, 4th
Edition, ISBN 978-0-12-370490-0.

Other useful texts are:

Processor Architecture, Silc, Robic and Ungerer, Springer, ISBN
13-540-64798-8

D. Sima, T. Fountain and P. Kacsuk, Advanced Computer Architecture a Design
space approach (Addison-Wesley)

Your own search-fu -- use Google Scholar!

12woensdag 5 september 2012

Assessment
Assessment will be by coursework assignments and exam

The following weighting will be used

Homework 20% Lab assignments 50% Exam 30%

Assignment labs start on Sep 4th, supervised by J. Neuteboom & B. Hijmans

http://www.liacs.nl/ca

Assignment assessment will be based on demonstration to the lab
supervisors (60%) and a brief report (40%) to me on the observations of
your results, deadline in details

13woensdag 5 september 2012

Assessment

Homework
20% Exam

30%

Lab3
20%

Lab2
20%

Lab1
10%

Lab1 Lab2 Lab3 Exam Homework

14woensdag 5 september 2012

Communication & contact

Please use the mailing list
https://list.uva.nl/mailman/listinfo/ca2012

Prefer group discussions to one-on-one interactions

There are no stupid questions, don’t be ashamed

However, try to find if your question has already been
answered first

15woensdag 5 september 2012

Course overview
The following topics will be covered in a bottom-up approach to the subject

1. Hardware/software interface, ISAs

2. Processors & implicit concurrency

Pipelined processors. superscalar microprocessors

3. Memory, caches, interconnects & topology

4. Explicit concurrency & parallelism in systems

Vector processors, VLIW, multi-cores, hardware multi-threading

5. Co-processors and accelerators

16woensdag 5 september 2012

Getting started

17woensdag 5 september 2012

Contribution of Comp. Arch.
Quantitative principles of design

Take advantage of parallelism

Principle of locality

Focus on the common case

Amdahl’s laws

Careful, quantitative comparison: define, quantify, summarize

Anticipating and exploiting advances in technology

Well-defined interfaces, carefully implemented and thoroughly defined

18woensdag 5 september 2012

Parallelism

Three main strategies:

Increase bandwidth and throughput by duplicating storage and data paths

Use pipelining, ie “assembly line”

Perform operations out of order, including simultaneously

Fundamental limits:

pipeline hazards

time and data dependencies = mandatory order

19woensdag 5 september 2012

Locality
Principle: individual programs access a relatively small portion of memory in
a small amount of time

Two different types:

Temporal locality: if an item is referenced, it will tend to be referenced
again soon (e.g., loops, reuse)

Spatial locality: if an item is referenced, items whose addresses are close
by tend to be referenced soon (e.g., straight-line code, array access)

Caches are a fundamental mechanism to take advantage of locality

20woensdag 5 september 2012

Memory hierarchy and latency

Registers - on-chip SRAM

L1 cache - on-chip SRAM

L2 cache - on-chip SRAM

	 	 off-chip SRAM

L3 cache - off-chip SRAM

Main memory - DRAM

Distributed memory
Size

1/cycle time

< 1
1-2
2-6
4-8
≃10
≥10
≥100

< 1
1-6
≃10
≥10
≥100
≥1000
≥10000

100MHz
clocks

GHz
clocks

21woensdag 5 september 2012

Focus on the common case

In making a design trade-off, favor the frequent case over the infrequent case

E.g., Instruction fetch and decode unit used more frequently than
multiplier, so optimize it 1st

E.g., If database server has 50 disks / processor, storage dependability
dominates system dependability, so optimize it 1st

Frequent case is often simpler and can be done faster than the infrequent case

What is frequent case and how much performance improved by making case
faster => Amdahl’s Law

22woensdag 5 september 2012

Amdahl’s law on speedup
Consider a computation P which contains two parts A and B in sequence

A can be enhanced (eg more parallelism, more performance); B cannot

T(P) = T(A) + T(B) (T = time to complete)

Imagine we can accelerate A infinitely so that T(A) becomes 0

Intuitively: overall speedup is limited by T(B)

If the complexity ratio between A and B is P[A/B] (proportion), and A can be
accelerated by a factor SA (speedup), Amdalh’s law says:

Soverall = 1 / ((1 - P[A/B]) + (P[A/B] / SA))

23woensdag 5 september 2012

Amdahl’s law example
An algorithm contains a sequential section and a parallel section

The parallel section contains 20% of the computation steps (P=0.2)

The parallel section can be accelerated by a factor N by using N
processors/cores

Maximum speedup with N cores = 1 / ((1 - 0.2) + (0.2 / N))

With N = 100, speedup = 1.24X (100 cores, yet only 24% perf increase!)

This is the fundamental limit to parallelism: to maximize performance
gains, need to first increase the proportion of the parallel section.

24woensdag 5 september 2012

Amdahl’s law on design
A balanced system design should provision 1 bit per second of
external bandwidth for each potential instruction per second

Too little external bandwidth: “I/O bound”

Too little instructions/second: “compute-bound”

“Desktop” computers are traditionally I/O bound

Mainframes are the other way around

Multi-cores require huge amount of bandwidth to stay balanced

25woensdag 5 september 2012

Lab assignments

26woensdag 5 september 2012

Lab assignments
First series: getting to know the hardware/software
interface, make your own MIPS code

2nd series: implement your own MIPS-like ISA in a simulator/
emulator

3rd series: use your simulator/emulator with your own programs to study
the impact of different architecture parameters on
program execution

Total: 50% of final grade;
First series: 10% of final grade; 2nd: 20%, 3rd: 20%

27woensdag 5 september 2012

How do programs run?

General computer model:
processor + memory + interconnect + I/O devices

Software is just bits, so is data

How does software translate into behavior?
ie. communication, computation and control?

Your take here

28woensdag 5 september 2012

Computers and interpreters

A computer processes inputs and produces output
Both inputs and outputs are just bits of data

A universal computer also reads what to do (program) as data
- it interprets the program code step by step as instructions

Software = data = program code + input
NB: The behavior of software comes from the machine that
interprets it

29woensdag 5 september 2012

Multiple layers of interpreters
Java bytecode and real hardware:

Java VM is an interpreter for Java bytecode

Hardware processor is an interpreter for Java VM program code

Python bytecode and real hardware:

CPython is an interpreter for Python bytecode

Hardware processor is an interpreter for CPython

System simulators/emulators and real hardware

MGSim is an interpreter for Alpha/SPARC/MIPS program code

Hardware processor is an interpreter for MGSim

30woensdag 5 september 2012

System initialization
What happens when you switch the computer on?

Define/explain the relationships between:

Reset signal

Initial program counter

Boot ROM

Boot code

Operating system

Start-up storage

CPU

ROM RAM

I/O interface

Disks

31woensdag 5 september 2012

What does this code do?
 .ent sum
sum:
 mov $31,$0
 ble $16,L2
 mov $31,$1
L3:
 ldl $2,0($17)
 addl $2,$0,$0
 addl $1,1,$1
 lda $17,4($17)
 cmpeq $1,$16,$2
 beq $2,L3
L2:
 ret $31,($26),1
 .end sum

$31 is a special register “zero”

“ble” = branch if lower or equal

Alpha assembly uses left-to-right operands
- except for ldX and br/jsr/ret

“lda” = load address, a form of “add”

$26 is also called “ra” for “return address”

Function arguments passed in $16-$21

32woensdag 5 september 2012

What does this code do?
 .ent sum
sum:
 mov $rz,$0
 ble $a0,L2
 mov $rz,$1
L3:
 ldl $2,0($a1)
 addl $2,$0,$0
 addl $1,1,$1
 lda $a1,4($a1)
 cmpeq $1,$a0,$2
 beq $2,L3
L2:
 ret $rz,($ra),1
 .end sum

“$a0” is an alias for the concrete
register name “$16”

The assembler translates the former to
the latter automatically

“ret A, (B)” means “place the current PC in
A, then jump to the address in B”

33woensdag 5 september 2012

How did we get this code?
C source for sum.c:

Compile: alpha-cc -S -o sum.s sum.c

Assemble: alpha-as -o sum.o sum.c

Link: alpha-ld -o demo sum.o ...

int sum(int n, int x[])
{
 int s = 0;
 for (int i = 0; i < n; ++i)
 s += x[i];
 return s;
}

34woensdag 5 september 2012

Let’s run this
You probably don’t have an Alpha processor at hand

First, let’s try to compile/assemble/link/run natively

eg. using the x86 instruction set

But this course is about RISC - the example uses the Alpha instruction set
so let’s use an emulator instead!

Emulator = program running on processor A that
interprets program code made for another processor B

Simulator = program that mimics the behavior of another system

All emulators are simulators, but the reverse is not true

35woensdag 5 september 2012

Why emulators? Why not native?

This course will talk about the processor(s) in your desktops/
laptop machines

But all x86 processors are really RISC “under the hood”

More useful to study RISC to understand the main problems

Also: for your lab assignments you will modify an architecture
and study its parameters

Easier with a simulator than real hardware!

36woensdag 5 september 2012

Intro to MGSim
Developed at the University of Amsterdam

Purpose is to simulate multi-cores and do architecture research

Simulates: cores, memory, interconnect, I/O devices

i.e. it is a full-system simulator

It emulates the Alpha and SPARC instruction sets

you will add support for MIPS in your lab assignments

37woensdag 5 september 2012

Intro to MGSim
See the manual page mgsimdoc(7)

System diagram for minisim.ini:

cpu0
memorybootrom

command to start:
mgsim -c minisim.ini yourprogram.bin

Add -i for an interactive prompt

38woensdag 5 september 2012

Summary
Seen today:

What is computer architecture and why it is important

Some general principles of architecture

Intro to the hardware/software interface, machine
instructions and system initialization

How to compile/assemble/link/run a program in a
simulated environment

39woensdag 5 september 2012

