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Processor performance equations

Performance = Results / second
            = Results / Instructions 
            x Instructions / Cycles
            x Cycles / Second

Execution time = Seconds / Result
               = Instructions / Result
               x Cycles / Instruction
               x Second / Cycle

Performance and execution time are related - how?

Hint: think throughput vs latency, 1 result vs many

frequency (Hz)
IPC

CPI
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Who controls what?

Results vs instructions: software
task of programmer, compiler, instruction set

Instructions vs cycles:  micro-architecture
task of processor designer, instruction set, partly compiler

Cycles vs seconds: technology
task of circuit designer, manufacturer
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Performance comparison
“X has a speedup of n relative to reference Y” 

“X is n times faster than Y”
n = perf(X) / perf(Y) 

  = exectime(Y) / exectime(X)

NB: performance encompasses software + hardware

Can’t compare performance of sw alone without
specifying which hw is used to measure

in general case
for 1 program
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Power
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Two forms of power

Dynamic power: cost of changing the state of transistors

Traditionally dominant

Static power: cost of keeping the state of transistors

Becoming important as dynamic power decreases
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Dynamic power
Powerdynamic = CapacitiveLoad x Voltage2 x SwitchFrequency

Capacitive load is a function of the number of transistors 
involved in the computation: more transistors = more power

Dropping voltage reduces dynamic power, however frequency 
dependent on voltage so frequency must be decreased too

Most circuits now disable clock of inactive components (set 
switch frequency to 0) to save dynamic power
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Static power
Powerstatic = LeakageCurrent x Voltage

Leakage current increases as transistor size decreases

Leakage current exists even when transistors do not switch

Low power circuits now disable voltage of inactive 
components to save on static power

However restoring voltage is costly in time
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Trends
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Moore’s law

“the number of transistors on 
integrated circuits doubles 

approximately every two years”
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Moore’s law
Why/how:

CMOS: logic based on semiconductor gates in silicon, DRAM: single-gate memory cells

laser photolithography to sculpt gates at atomic scale

Fundamental limits:

can’t make CMOS smaller than atoms in silicon

difficult to increase precision of lasers in manufacturing

Probable evolutions:

number of transistors per unit of area in silicon will stabilize

likely: larger chips + 3D designs with multiple layers of silicon (more area)

12dinsdag 11 september 2012



Latency lags bandwidth

Latency Bandwidth Transistors

Processors /30 x3000 x10000+

Networks /20 x1000

Memory /4 x200 x100000+

Disks /10 x200

Improvements over ca. 20 years
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Latency lags bandwidth
Moore’s law helps bandwidth more than latency

More transistors + more pins = more bandwidth

Distance limits latency, storage capacity increases distance

More transistors = relatively longer lines

We will study this later in the context of memories

Market bias: bandwidth easier to sell, so more investment there
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Latency lags bandwith
Latency helps bandwidth, but not the other way around

eg: faster disk spin rate: shorter access times, more requests by 
second

but: more disks in parallel = more bandwidth, same latency

Bandwidth hurts latency

Queues help bandwidth, hurts latency (queuing theory)

adding parallelism actually increases latency (cf later lecture)
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Latency lags bandwidth
Summary:

For 1 component, 
bandwidth increases by square of latency decrease

Parallelism allows to scale bandwidth arbitrarily, 
but keeps latency constant or increases

Similar ratios for performance vs execution time

These trends are there to stay
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Processors: 
RISC pipelines
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Instruction set architecture
ISA = instruction set + operational semantics

Instruction set = all possible instruction encodings

Described with instruction formats and decode logic

Defines how operands and operations are derived from the instruction 
codes

Operational semantics = “what instruction do”

Described with pseudo-code, also called Register Transfer Language (RTL)

Defines how results are produced from operands
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Example instruction set: MIPS

First bits determine op
and encoding of rest

More regularity =
simpler decode logic

Op Format Opx Insn
0 R-R 0x20 add
0 R-R 0x21 addu
0 R-R 0x22 sub
0 R-R 0x23 subu

bu
8 R-I - addi
9 R-I - addiu

0x23 R-I - lw
0x2B R-I - sw

4 B (R-I) - beq
3 J - jal

Example encodings
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Example RTL: ALU

IR <= mem[PC]
PC <= PC + 4

A <= reg[IRrs1]
B <= reg[IRrs2]

res <= A opIRop B

WB <= res
Reg[IRrd] <= WB

Simple names (IR, PC...) 
designate buffers: 1 value

Names with brackets designate
memories (address in, data out)

These parts are common 
to all instructions

This is specific
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© Chris Jesshope 2008-2011, Raphael Poss 2011

Pipelines
Each instruction / operation can be decomposed in sub-tasks:
Op = A ; B ; C ; D

Considering an instruction stream [Op1; Op2; ...]
at each cycle n we can run in parallel:   An+3 ∣∣ Bn+2 ∣∣ Cn+1 ∣∣ Dn

A B C D

A B C D

input An+3 input Bn+2 input Cn+1at start of cycle n:
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Origins of pipelining

Idea: “assembly line”

Different phases of two instructions can occur at the same 
time

eg. read operand of one instruction while the next is 
being fetched

More steps in RTL = potentially more stages in pipeline
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Processor from scratch
Start with an ALU: multiple functional units

Inputs: A, B, opsel (“which operation to perform”)

Make A and B come from a register file

Needs register addresses #A and #B

Add a decode stage: compute #A, #B, opsel from instruction

Needs instruction to decode

Add a fetch stage: get instruction from memory, using PC

Need logic to increase PC after each instruction

Arithmetic results: Need to store final value C in register file

Need register address #C, also decoded from instruction

Memory: some operations access memory (loads, stores)

“Basic blocks”:
- data paths
- buffers
- functional units
- multiplexers
- memories
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MIPS Pipeline
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Dynamic behavior of 
pipelines
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1 program, 5 operations:

Dynamic behavior

4 sub-tasks, CPI = 4

(total execution time: 8 cycles)
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Pipeline performance
This pipeline has a length of 4 subtasks, 
assume each sub-task takes t seconds

for a single instruction we get no speedup; it takes 4t seconds to 
complete all of the subtasks

this is the same as performing each sub task in sequence on the 
same hardware

In the general case – for n instructions – it takes 4t seconds to 
produce the first result and t seconds for each subsequent result
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Pipeline performance
For a pipeline of length L and cycle time t,  the time T it takes to process n operations 
is:
T(n) = L·t + (n-1)·t = (L-1)·t + n·t

We can characterise all pipelines by two parameters:

startup time: S = (L-1)·t         (unit: seconds)

maximum rate: r∞ = 1/t            (unit: instructions per second)

Also used: 

half-performance vector length n½  which verifies T(n½)/2 = n½ · r∞-1 
n½ = L-1= S/t                                 (unit: number of operations)

28dinsdag 11 september 2012



© Chris Jesshope 2008-2011, Raphael Poss 2011

Asymptotic performance
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Optimization strategies
Long instruction sequences suggest IPC = 1

However there are problems with this:

some instructions require less sub-tasks than others

hazards: dependencies and branches

long-latency operations: can’t fit the pipeline model

What to do about these? The rest of the lecture covers this.
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Pipeline trade-offs
Observations:

more complexity per sub-task requires more time per cycle

conversely, as the sub-tasks become simpler the cycle time can be reduced

so to increase the clock rate instructions must be 
broken down into smaller sub-tasks

…but operations have a fixed complexity

smaller sub-tasks mean deeper pipelines = more stages
⇒ more instructions need to be executed to fill the pipeline
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