
Computer Architecture
R. Poss

Computer Systems Architecture group (UvA)
e-mail: r.c.poss@uva.nl

1dinsdag 11 september 2012

Performance

2dinsdag 11 september 2012

Processor performance equations

Performance = Results / second
 = Results / Instructions
 x Instructions / Cycles
 x Cycles / Second

Execution time = Seconds / Result
 = Instructions / Result
 x Cycles / Instruction
 x Second / Cycle

Performance and execution time are related - how?

Hint: think throughput vs latency, 1 result vs many

frequency (Hz)
IPC

CPI

3dinsdag 11 september 2012

Who controls what?

Results vs instructions: software
task of programmer, compiler, instruction set

Instructions vs cycles: micro-architecture
task of processor designer, instruction set, partly compiler

Cycles vs seconds: technology
task of circuit designer, manufacturer

4dinsdag 11 september 2012

Performance comparison
“X has a speedup of n relative to reference Y”

“X is n times faster than Y”
n = perf(X) / perf(Y)

 = exectime(Y) / exectime(X)

NB: performance encompasses software + hardware

Can’t compare performance of sw alone without
specifying which hw is used to measure

in general case
for 1 program

5dinsdag 11 september 2012

Power

6dinsdag 11 september 2012

Two forms of power

Dynamic power: cost of changing the state of transistors

Traditionally dominant

Static power: cost of keeping the state of transistors

Becoming important as dynamic power decreases

7dinsdag 11 september 2012

Dynamic power
Powerdynamic = CapacitiveLoad x Voltage2 x SwitchFrequency

Capacitive load is a function of the number of transistors
involved in the computation: more transistors = more power

Dropping voltage reduces dynamic power, however frequency
dependent on voltage so frequency must be decreased too

Most circuits now disable clock of inactive components (set
switch frequency to 0) to save dynamic power

8dinsdag 11 september 2012

Static power
Powerstatic = LeakageCurrent x Voltage

Leakage current increases as transistor size decreases

Leakage current exists even when transistors do not switch

Low power circuits now disable voltage of inactive
components to save on static power

However restoring voltage is costly in time

9dinsdag 11 september 2012

Trends

10dinsdag 11 september 2012

Moore’s law

“the number of transistors on
integrated circuits doubles

approximately every two years”

11dinsdag 11 september 2012

Moore’s law
Why/how:

CMOS: logic based on semiconductor gates in silicon, DRAM: single-gate memory cells

laser photolithography to sculpt gates at atomic scale

Fundamental limits:

can’t make CMOS smaller than atoms in silicon

difficult to increase precision of lasers in manufacturing

Probable evolutions:

number of transistors per unit of area in silicon will stabilize

likely: larger chips + 3D designs with multiple layers of silicon (more area)

12dinsdag 11 september 2012

Latency lags bandwidth

Latency Bandwidth Transistors

Processors /30 x3000 x10000+

Networks /20 x1000

Memory /4 x200 x100000+

Disks /10 x200

Improvements over ca. 20 years

13dinsdag 11 september 2012

Latency lags bandwidth
Moore’s law helps bandwidth more than latency

More transistors + more pins = more bandwidth

Distance limits latency, storage capacity increases distance

More transistors = relatively longer lines

We will study this later in the context of memories

Market bias: bandwidth easier to sell, so more investment there

14dinsdag 11 september 2012

Latency lags bandwith
Latency helps bandwidth, but not the other way around

eg: faster disk spin rate: shorter access times, more requests by
second

but: more disks in parallel = more bandwidth, same latency

Bandwidth hurts latency

Queues help bandwidth, hurts latency (queuing theory)

adding parallelism actually increases latency (cf later lecture)

15dinsdag 11 september 2012

Latency lags bandwidth
Summary:

For 1 component,
bandwidth increases by square of latency decrease

Parallelism allows to scale bandwidth arbitrarily,
but keeps latency constant or increases

Similar ratios for performance vs execution time

These trends are there to stay

16dinsdag 11 september 2012

Processors:
RISC pipelines

17dinsdag 11 september 2012

Instruction set architecture
ISA = instruction set + operational semantics

Instruction set = all possible instruction encodings

Described with instruction formats and decode logic

Defines how operands and operations are derived from the instruction
codes

Operational semantics = “what instruction do”

Described with pseudo-code, also called Register Transfer Language (RTL)

Defines how results are produced from operands

18dinsdag 11 september 2012

Example instruction set: MIPS

First bits determine op
and encoding of rest

More regularity =
simpler decode logic

Op Format Opx Insn
0 R-R 0x20 add
0 R-R 0x21 addu
0 R-R 0x22 sub
0 R-R 0x23 subu

bu
8 R-I - addi
9 R-I - addiu

0x23 R-I - lw
0x2B R-I - sw

4 B (R-I) - beq
3 J - jal

Example encodings

19dinsdag 11 september 2012

Example RTL: ALU

IR <= mem[PC]
PC <= PC + 4

A <= reg[IRrs1]
B <= reg[IRrs2]

res <= A opIRop B

WB <= res
Reg[IRrd] <= WB

Simple names (IR, PC...)
designate buffers: 1 value

Names with brackets designate
memories (address in, data out)

These parts are common
to all instructions

This is specific

20dinsdag 11 september 2012

© Chris Jesshope 2008-2011, Raphael Poss 2011

Pipelines
Each instruction / operation can be decomposed in sub-tasks:
Op = A ; B ; C ; D

Considering an instruction stream [Op1; Op2; ...]
at each cycle n we can run in parallel: An+3 ∣∣ Bn+2 ∣∣ Cn+1 ∣∣ Dn

A B C D

A B C D

input An+3 input Bn+2 input Cn+1at start of cycle n:

21dinsdag 11 september 2012

Origins of pipelining

Idea: “assembly line”

Different phases of two instructions can occur at the same
time

eg. read operand of one instruction while the next is
being fetched

More steps in RTL = potentially more stages in pipeline

22dinsdag 11 september 2012

Processor from scratch
Start with an ALU: multiple functional units

Inputs: A, B, opsel (“which operation to perform”)

Make A and B come from a register file

Needs register addresses #A and #B

Add a decode stage: compute #A, #B, opsel from instruction

Needs instruction to decode

Add a fetch stage: get instruction from memory, using PC

Need logic to increase PC after each instruction

Arithmetic results: Need to store final value C in register file

Need register address #C, also decoded from instruction

Memory: some operations access memory (loads, stores)

“Basic blocks”:
- data paths
- buffers
- functional units
- multiplexers
- memories

23dinsdag 11 september 2012

MIPS Pipeline

24dinsdag 11 september 2012

Dynamic behavior of
pipelines

25dinsdag 11 september 2012

© Chris Jesshope 2008-2011, Raphael Poss 2011

1 program, 5 operations:

Dynamic behavior

4 sub-tasks, CPI = 4

(total execution time: 8 cycles)
26dinsdag 11 september 2012

© Chris Jesshope 2008-2011, Raphael Poss 2011

Pipeline performance
This pipeline has a length of 4 subtasks,
assume each sub-task takes t seconds

for a single instruction we get no speedup; it takes 4t seconds to
complete all of the subtasks

this is the same as performing each sub task in sequence on the
same hardware

In the general case – for n instructions – it takes 4t seconds to
produce the first result and t seconds for each subsequent result

27dinsdag 11 september 2012

© Chris Jesshope 2008-2011, Raphael Poss 2011

Pipeline performance
For a pipeline of length L and cycle time t, the time T it takes to process n operations
is:
T(n) = L·t + (n-1)·t = (L-1)·t + n·t

We can characterise all pipelines by two parameters:

startup time: S = (L-1)·t (unit: seconds)

maximum rate: r∞ = 1/t (unit: instructions per second)

Also used:

half-performance vector length n½ which verifies T(n½)/2 = n½ · r∞-1
n½ = L-1= S/t (unit: number of operations)

28dinsdag 11 september 2012

© Chris Jesshope 2008-2011, Raphael Poss 2011

Asymptotic performance

29dinsdag 11 september 2012

© Chris Jesshope 2008-2011, Raphael Poss 2011

Optimization strategies
Long instruction sequences suggest IPC = 1

However there are problems with this:

some instructions require less sub-tasks than others

hazards: dependencies and branches

long-latency operations: can’t fit the pipeline model

What to do about these? The rest of the lecture covers this.

30dinsdag 11 september 2012

© Chris Jesshope 2008-2011, Raphael Poss 2011

Pipeline trade-offs
Observations:

more complexity per sub-task requires more time per cycle

conversely, as the sub-tasks become simpler the cycle time can be reduced

so to increase the clock rate instructions must be
broken down into smaller sub-tasks

…but operations have a fixed complexity

smaller sub-tasks mean deeper pipelines = more stages
⇒ more instructions need to be executed to fill the pipeline

31dinsdag 11 september 2012

