
Computer Architecture
R. Poss

Computer Systems Architecture group (UvA)
e-mail: r.c.poss@uva.nl

1maandag 15 oktober 2012

What is memory?

A device with a single address/data/command interface and
a protocol:

“a load from address X returns the value Y written by the
most recent store to the same address X”

2maandag 15 oktober 2012

What is a cache?
Two “sides”:

downstream: the processor side

upstream: the memory side

On the downstream side the cache behave likes a memory from
the processor’s perspective

On the upstream side the cache behaves like a memory client to
the upstream memory’s perspective

Hint: data for loads flows like
rivers from memory (upside)

to processor (downside)

3maandag 15 oktober 2012

What is a cache? (cont)
Caches follow the memory protocol downstream: “a load from address
X returns the value Y written by the most recent store to the same
address X”

However they have 2 extra “features”:

they answer requests of the downstream client at a faster or
equal rate than the memory upstream

they reduce the number of requests: fewer requests
sent upstream than received from downstream

4maandag 15 oktober 2012

Caches and design
cf. Henessy & Patterson, Chap. 5

5maandag 15 oktober 2012

Caching - summary
Caches are small fast memories that store recently used data close to the
processor (usually on-chip)

As the memory wall has grown, the number of levels of cache between
main memory and the processor has increased

from 0 to 1 to 2 and now some systems use 3 levels

Caches are largely transparent to the programmer

but programmers must be aware of the cache while
designing code to ensure regular access patterns

6maandag 15 oktober 2012

The processor’s memory hierarchy

Registers - on-chip SRAM

L1 cache - on-chip SRAM

L2 cache - on-chip SRAM

	 	 off-chip SRAM

L3 cache - off-chip SRAM

Main memory - DRAM

Distributed memory
Size

1/cycle time
(bandwidth)

< 1
1-2
2-6
4-8
≃10
≥10
≥100

< 1
1-6
≃10
≥10
≥100
≥1000
≥10000

100MHz
clocks

GHz
clocks

NB: despite the orientation, this side is upstream!
7maandag 15 oktober 2012

Cache operation at multiple levels

Caches contain copies of blocks of data from main memory - cache lines

Reads to memory go up the memory hierarchy
at each level a check is made to determine if the data is present at that level

Cache hit - the required data is in the cache: the data is taken from that level and
propagated down the hierarchy (in the direction of processor)

Cache miss - the required data is not in the cache: the request goes up a level until found

A cache miss at any level may overwrite old data when the requested new data is propagated
down the hierarchy - “thrashing” occurs when the old data is needed shortly

Similarly, when data is written to the cache, it is written back to main memory either immediately,
when space is required in the cache, or, in a multi-processor system, when another processor
requires it.

8maandag 15 oktober 2012

Caching principles
Caches provide reuse of recently fetched data tramsparenly to the programmer or compiler

Shorter delay of access to same data after the first access to a
longer delay memory

Caches rely on the principle of locality:

Temporal locality - information that has just been used is likely to be used again in the
future.

Spatial locality - because a cache line contains more than one word of data, words close to
the original miss will now be resident in the cache and may be accessed without further penalty.

The former requires frequent access to the same data
the latter requires regular access patterns to memory
e.g. regular small strides through memory – e.g. consecutive words

9maandag 15 oktober 2012

From the programmer’s perspective

The major problem is that not all codes exhibit the locality property…

a non-indexed scan in a large database may contain some spatial locality but it has no
temporal locality

if the DB record is as large as a cache line, then not even spatial locality will be
observed, each record will require a RAM read and a key check

Because of the implicit nature of their use,
without locality it is as if the cache did not exist at all and all
accesses to memory are as slow as the slowest component

There is a trend (e.g. IBM’s Cell) to use explicit local and global RAM with explicit mapping of
data by programmer/compiler, but this makes programming more difficult & non portable

10maandag 15 oktober 2012

Cache design issues
Caches can be:

Unified or separate w.r.t. data and instructions

L1 cache normally separate and L2/L3 normally unified

Write through - data is written to cache and also sent to the upper level

Write around - data is sent to upper level but not written to cache

Write/Copy back - data is written to cache but sent up the hierarchy: the upper level memories
may become inconsistent with respect to program state

Copy back is used in multi-processor systems: a write around/through strategy can consume a
large amount of bus or network bandwidth

How to maintain coherence between multiple copies?

Lower levels of cache are normally write around/through

11maandag 15 oktober 2012

Level 1 cache miss
A processor’s data-path will contain two level-1 caches for concurrent data and instruction access –
pipeline operation

Hitting this cache is very important for performance:

The cache (I or D-cache) hits if the required data is present - then
data is typically accessed in a single cycle

On a miss the pipeline will stall; in the worst case until a higher
level of memory hierarchy hits and provides the required data

This may require a read to the main memory

Only then can the pipeline continue the stalled instruction

Some processors allow multiple concurrent accesses to memory by allowing instructions to issue and/or
complete out of programmed order - we will come back to this later

12maandag 15 oktober 2012

Mapping from memory to cache
The line or block size is the unit of data managed by the cache typically 32-256 bytes

each line has a tag (from its address) stored in the cache and used to determine which memory
block is mapped to the cache line

A cache mapping determines which line(s) in a cache an address in memory can mapped to:

Direct mapped (simplest) yields a unique line in cache for any given block in memory -
based on its address

Fully associative (most complex) allows any memory block to be mapped to any cache line

Associative addressing is expensive; Set-associative cache gives a compromise between these
extremes
for example a “4-way set associative” cache has sets of 4 lines where a line may be mapped to

Associative mapping requires concurrent tag matching to find a line in a single memory cycle

13maandag 15 oktober 2012

Cache lines

The tag comprises enough address information to identify which block of
memory the cache line holds

The bits required depend on the mapping strategy

State used in algorithm to replace lines e.g. valid/invalid

tag Datastate

14maandag 15 oktober 2012

Cache mapping - example

Block no 1 2 3 4 5 6 7 8 Block no 1 2 3 4 5 6 7 8 Block no 1 2 3 4 5 6 7 8

Set
0

Set
1

Set
2

Set
3

Fully
associative

Direct
mapped

2-way
set associative

For the memory address 386, 32-byte cache lines and an 8 line cache:
<block addr> = floor(<mem addr> / <cache line size>) = floor(386 / 32) = 12
	 Direct mapped: line = <block addr> mod <nr. of lines> = 12 mod 8 = 4
 2-way set associative: <nr. of sets> = <nr. of lines> / <set associativity>
 set = <block addr> mod <nr. of sets> = 12 mod 8/2 = 0
	 Fully associative: one set of 8 lines, so anywhere in cache

15maandag 15 oktober 2012

Direct mapped caches

000 001 010 011 100 101 110 111

...00001 ...00101 ...01001 ...01101 ...10001 ...10101 ...11001 ...11101 ...00001 ...00101

Cache line number

Cache line size

Memory address

16maandag 15 oktober 2012

Direct-mapped caches
A direct mapped cache is simple and fast

…but has problems from its inflexibility in mapping

Address strides (differences between consecutive addresses) of a multiple of the
cache line size map subsequent accesses (to different memory blocks) all to the
same cache line – even though other lines may be empty!

This is called a pathological access pattern

Direct mapped cache is often used as 2nd or 3rd level cache which is much larger
and hence has less contention but the programmer must still be aware of this
restriction

17maandag 15 oktober 2012

Evaluating cache
performance

As an exercise try the following…

Design a program to evaluate cache parameters of
your workstation/laptop

Note that a significant difference in performance
will be observed when data is being sourced from

L1

L2/3

Main memory

18maandag 15 oktober 2012

Direct-mapped cache addressing

E.g. a 32-bit byte address into a direct-mapped cache of size of 512KBytes and a line size
of 32 Bytes (i.e. 16K lines) the address fields above comprise:

5 bits of byte address (0..4) gives the byte offset in the cache line

14 bits of cache line address (5..18) give cache line (16K direct mapped)

the remaining 13 bits (19..31) determine which block from the 8K possible memory
blocks is mapped to the cache line
tags stored in cache line, matched with the address from the processor to check hits

13-bit tag 0 .. 320 .. 214-1
031... 5 4...19 18...

tag line address byte
in line

19maandag 15 oktober 2012

2 1 031... 5 419 18...

Valid tag

line data

0
1
.
.
.
.
.
.

16382
16383

=

cache hit Data

Address

Cache-hit logic

Address line

Address word

Example 4-byte access in DM cache

20maandag 15 oktober 2012

Write policies

Write-through: stores from CPU are copied to cache and
simultaneously sent to memory

Write-back: stores from CPU stay in the cache until the
line needs to be replaced (causes evictions)

Write-around: behaves write-back/write-through on hit
(line already in cache); if conflict then store goes around the
cache directly to memory, no copy kept locally

21maandag 15 oktober 2012

8-way set associative cache addressing

E.g. a 32-bit byte address into an 8-way set associative cache of size of 512KBytes and a
line size of 32 Bytes (i.e. 16K lines):

5 bits of address (0..4) gives the byte offset in the cache line

11 bits (5..15) address 2K sets of 8 cache lines (16K lines total)

16 bit tag (16..31) determines which block from the 64K possible memory blocks is
mapped to one of the cache line in that set;
stored as tag in the cache line and matched with the address from the processor

16-bit tag 0 .. 320 .. 211-1
031... 5 4...19 18...

tag set address byte
in line

22maandag 15 oktober 2012

4-byte access in 8-way set associative cache

2 1 031... 5 416 15...

Valid tag data

0
1
.
.
.
.
.
.
.
2046
2047

cache hit

Data

Address

Address set

set of lines

23maandag 15 oktober 2012

Line sets in associative caches

=
=
=
=
=
=
=
=

+

hit

Tag from address Data put on bus by matching line

8 tags compared in parallel

24maandag 15 oktober 2012

Fully associative cache addressing

E.g. a 32-bit byte address into an fully associative cache of size of 1KBytes and a line
size of 32 Bytes (i.e. 32 lines - fully associative means each line requires a
comparitor):

5 bits of address (0..4) gives the byte offset in the cache line

27 bits (5..31) determine which block from the 128M possible memory blocks is
mapped to one of the cache line in that set
stored as tag in the cache line and matched with the address from the processor

27-bit tag 0 .. 32
031... 5 4...

tag byte
in line

25maandag 15 oktober 2012

Access to fully associative cache

=

=
=
=
=
=
=
=

+

hit

Data put on bus by matching line

Tag
 031... 5 4

Address

…
0
.
.
.
.
.
.
.
.
.
.

510

511

26maandag 15 oktober 2012

