
Computer Architecture
R. Poss

Computer Systems Architecture group (UvA)
e-mail: r.c.poss@uva.nl

1maandag 15 oktober 2012

Virtual Memory
cf. Henessy & Patterson, App. C4

2maandag 15 oktober 2012

Virtual Memory
It is easier for the programmer to have a large Virtual memory than to program explicit
I/O due to memory limitations

Also in multi-programming memory is shared between many programs, some suspended
or inactive for a while

only a small fraction of virtual memory is used at any one
time in a multi-programming environment

Virtual memory uses main memory to store only part of the larger virtual memory space
and the remainder is held on external storage, eg discs

The unit exchanged between memory and disc is called a page which may be
divided into segments

3maandag 15 oktober 2012

Virtual memory mapping

Virtual
address space

Pages
stored

externally

Pages
in main
memory

4maandag 15 oktober 2012

VM Terminology
The replacement unit in virtual memory is called a page

The address produced by the processor is called a virtual address

This get translated by a MMU via a page table
into a physical address (PT hit) or page fault (PT miss)

The page table is in main memory but has a special cache called a TLB
(translation look-aside buffer)

Page faults usually managed by a software trap to an operating system

This mapping process is called address translation

5maandag 15 oktober 2012

VM Address translation

This shows address mapping from a 4 GiB virtual address space onto
in a 1 GiB physical address space using 4KiB memory pages

The translation is performed using a 1M entries (3MiB) table in
memory, addressed by the virtual page number

Virtual page number Page offset

31... 12 11 ... 0

Translation

Physical page number Page offset

29... 12 11 ... 0

6maandag 15 oktober 2012

Virtual memory issues
Need flexibility in page placement to avoid costly page misses

Unlike cache mapping, VM mapping is implemented as a table in main memory - allows
arbitrary mapping

indexed by virtual address

that yields the physical address

Page misses are handled by software and incur a large penalty

Pages must be sufficiently large to amortise this large overhead
and to minimise the mapping table size

4 to 64KByte is a typical page size
with variable size pages can be as large as 1MByte

7maandag 15 oktober 2012

Replacement, processes and protection

Sophisticated algorithms for placement can be coded in software

pages known to be often required can be locked down

Each process has its own virtual address space and page table

this means programs can not interfere (read/write) the memory of any other

To achieve protection, user code must be prevented from altering the page tables

This is normally achieved by having different modes of operation
(eg. user mode vs. kernel mode)

alternatively, using security capabilities on the page table data

8maandag 15 oktober 2012

Page table

Valid
bit Physical page number

Virtual page number Page offset

31... 12 11 ... 2 1 0

Physical page number Page offset

29... 12 11 ... 2 1 0Page fault
logic

Page table register

Note: the page table,
the PC and the state of
the registers all
contribute to the state
of a program

9maandag 15 oktober 2012

Translation Look-aside buffers
Translation Look-aside buffers (TLB) cache the page table in small fast memory

NB: The page table is too large to be held entirely in fast memory

Without the TLB, access to memory would be twice as slow

One access to the page table for address translation

One to the data itself

Address translation and L1 cache access can be performed in one or two processor cycles
(so long as we get a cache hit)

Big question: which memory space do we cache:
Virtual or Physical?

10maandag 15 oktober 2012

Physically addressed caches
Addresses translated by memory management unit (MMU) before
cache lookup

Sequential - even with a TLB and cache hit,
access can be slow as it requires sequential memory accesses

Processor Cache Main memory

MMU

11maandag 15 oktober 2012

Virtually addressed caches
Addresses translated by MMU in parallel with cache lookup

Aliasing – is where the same virtual address in different processes maps to the same
location in cache

Context switching therefore requires a full cache invalidation (time expensive)
or a process identifier in the tag (space expensive)

Aliasing is averted if all processes share the same virtual address space

Processor Cache Main memory

MMU

12maandag 15 oktober 2012

Page table size

The example earlier was for 32-bit addresses and yielded a 1MiB table

For a 64-bit architecture and say a 48-bit virtual address and 4KiB pages we get:

table size = 248/212 = 236 entries = 239 bytes = 512GiB!!

and this is replicated for each process (!!)

Solution is to grow page table as required

keep limit and check limit on each access

increase (e.g. double size) on each overflow

13maandag 15 oktober 2012

Page table size

Address usage may be sparse

Another solution is to use a multi-level page table
as this takes advantage of sparseness

e.g. use very large pages and keep a table of these

within a large page keep a table of smaller pages
(e.g. 4KiB)

14maandag 15 oktober 2012

Multi-level page table

15maandag 15 oktober 2012

