
Computer Architecture
R. Poss

Computer Systems Architecture group (UvA)
e-mail: r.c.poss@uva.nl

1maandag 12 november 2012

Pipeline reminders

2maandag 12 november 2012

Motivation
Pipeline-level parallelism is the weapon of architects
to increase throughputs
and tolerate latencies of communication
for individual instruction streams
(i.e. sequential programs)
without participation from the programmer
(i.e. implicit)

We will cover true and explicit parallelism later in the course

3maandag 12 november 2012

Processor performance

Latency: expressed as CPI = cycles per instruction
divide by frequency to obtain absolute latency

Throughput: expressed as IPC = instructions per cycle
multiply by frequency to obtain absolute throughput

Pipelining objective: increase IPC, also decrease CPI
As we will see ↘CPI and ↗IPC are conflicting requirements

4maandag 12 november 2012

Types of pipeline concurrency
Pipelined: operations broken down in sub-tasks
⇒ different sub-tasks from different operations run in parallel

Scalar pipelined: multiply the functional units
⇒ the same sub-task from different operations run in parallel

Superscalar pipelined: multiply the issue units
⇒ multiple operations issued and completing simultaneously

5maandag 12 november 2012

Pipelines
Each instruction / operation can be decomposed in sub-tasks:
Op = A ; B ; C ; D

Considering an instruction stream [Op1; Op2; ...]
at each cycle n we can run in parallel: An+3 ∣∣ Bn+2 ∣∣ Cn+1 ∣∣ Dn

A B C D

A B C D

input An+3 input Bn+2 input Cn+1at start of cycle n:

6maandag 12 november 2012

Example: MIPS

7maandag 12 november 2012

1 program, 5 operations:

Dynamic behavior

4 sub-tasks, CPI = 4

(total execution time: 8 cycles)
8maandag 12 november 2012

Pipeline performance
This pipeline has a length of 4 subtasks,
assume each sub-task takes t seconds

for a single operation we get no speedup; it takes 4t seconds to
complete all of the subtasks

this is the same as performing each sub task in sequence on the
same hardware

In the general case – for n operations – it takes 4t seconds to
produce the first result and t seconds for each subsequent result

9maandag 12 november 2012

Pipeline performance
For a pipeline of length L and cycle time t, the time T it takes to process n operations
is:
T(n) = L·t + (n-1)·t = (L-1)·t + n·t

We can characterise all pipelines by two parameters:

startup time: S = (L-1)·t (unit: seconds)

maximum rate: r∞ = 1/t (unit: instructions per second)

Also used:

half-performance vector length n½ which verifies T(n½)/2 = n½ · r∞-1
n½ = L-1= S/t (unit: number of operations)

10maandag 12 november 2012

Optimization strategies
Long instruction sequences suggest IPC = 1

However there are problems with this:

some instructions require less sub-tasks than others

hazards: dependencies and branches

long-latency operations: can’t fit the pipeline model

What to do about these? The rest of the lecture covers this.

11maandag 12 november 2012

Trade-offs
Observations:

more complexity per sub-task requires more time per cycle

conversely, as the sub-tasks become simpler the cycle time can be reduced

so to increase the clock rate instructions must be
broken down into smaller sub-tasks

…but operations have a fixed complexity

smaller sub-tasks mean deeper pipelines = more stages
⇒ more instructions need to be executed to fill the pipeline

12maandag 12 november 2012

Control hazards

13maandag 12 november 2012

Control hazards
Branches – in particular conditional branches – cause pipeline hazards

the outcome of a conditional branch is not known until the end of the EX stage,
but is required at IF to load another instruction and keep the pipeline full

A simple solution:
assume by default that the branch falls through – i.e. is not taken –
then continue speculatively until the target of the branch is known

IF
beq ID Ex WBBranch not taken

IF ID Ex WB

Continue to fetch but stall ID
until branch target is known
– one cycle lost

IF
beq ID Ex WBBranch is taken

IF ID Ex WB

Need to refetch at new target
– two cycles lostIF

Wrong target

14maandag 12 november 2012

How to overcome
Eliminate branches altogether via predication (most GPUs)

Expose the branch delay to the programmer / compiler:
branch delay slots (MIPS, SPARC, PA-RISC)

Fetch from both targets, requires branch target address prediction

Predict whether the branch is taken or not: branch prediction

Execute instructions from other threads: hardware multithreading
(eg Niagara, cf next lecture)

15maandag 12 november 2012

Grohoski’s estimate

16maandag 12 november 2012

Branch prediction using history buffers

Stores the prediction state in a table, either associatively addressed or indexed
on small number of address bits

Can also store branch target if it is associative

Get prediction at IF stage and update prediction when condition is resolved

17maandag 12 november 2012

Predication
Control flow can (in some cases) be replaced by guarded or predicated instruction
execution…

a condition sets a predicate register (boolean)

instructions are predicated on that register

any state change (WB or Mem write) only occurs if the predicate is true

Useful in long pipelines where branch hazards can be costly,
or to simplify the pipeline logic by not handling control hazards at all

it removes a control hazard at the expense of redundant instruction
execution

18maandag 12 november 2012

Predication – example

19maandag 12 november 2012

Branch delay slots
Specify in the ISA that a branch takes effect two instructions
later, then let the compiler / programmer fill the empty slot

L1:
 lw a x[i]
 add a a a
 sw a x[i]
 sub i i 4
 bne i 0 L1
 nop
L2: 1 cycle wasted at

each iteration

L1:
 lw a x[i]
 add a a a
 sw a x[i]
 bne i 4 L1
 sub i i 4
L2: no bubble, but one extra sub

at last iteration

20maandag 12 november 2012

Fetch from both targets
Using an additional I-cache port, both taken and not-taken are fetched

Then at EX a choice is made as to which is decoded

When coupled with a branch delay slot this eliminates all wasted cycles,
but…

longer pipelines, eg 20 stages, might contain several branches
in the pipe prior to EX

multiple conditional branches will break this solution,

as every new branch doubles the number of paths fetched

21maandag 12 november 2012

Summary
Control hazards are situations where the pipeline is not fully
utilized due to branch instructions

Branch prediction, delay slots and predication are
architectural solutions to overcome control hazards

Only branch prediction is fully invisible to software

Without these solutions, software must avoid branches by
inlining and loop unrolling; with a trade-off: more code means
more pressure on I-Cache

22maandag 12 november 2012

