
Computer Architecture
R. Poss

Computer Systems Architecture group (UvA)
e-mail: r.c.poss@uva.nl

1dinsdag 13 november 2012

Data hazards

2dinsdag 13 november 2012

Data hazard
Occurs when the output of one operation is the input of a subsequent operation

The hazard occurs because of the latency in the pipeline

the result (output from one instruction) is not written back to the register file until the
last stage of the pipe

the operand (input of a subsequent instruction) is required at register read – some
cycles prior to writeback

the longer the RR to WB delay, the more cycles there must be between the writeback of the
producer instruction and the read from the consumer

Example:

3dinsdag 13 november 2012

How to overcome
Do nothing i.e. expose to the programmer, e.g. MIPS 1

Stall the read stage

Bypass buses:

Also: reorder the instructions

The operand is
taken from the
pipeline register
and input directly
to the ALU on the
subsequent cycle

4dinsdag 13 november 2012

Structural hazards
and scalar ILP

5dinsdag 13 november 2012

Scalar pipelines
In the simple pipeline, register-to-register operations have a wasted cycle

a memory access is not required, but this stage still requires a cycle to complete
the operations

Decoupling memory access and operation execution avoids this
e.g. use an ALU plus a memory unit - this is scalar ILP

… note: either we need two write ports to the register file or arbitration on a single port

6dinsdag 13 november 2012

Structural hazard - registers
A structural hazard occurs when a resource in the pipeline is
required by more than one instruction

a resource may be an execution unit or a register port

Example: only one write port
 lw a addr
 add b c d

7dinsdag 13 november 2012

Structural hazard - execution units

Some operations require more than one pipeline cycle

mult is more complex than add (often requires 2 cycles)

floating point still more complex still (~ 5 cycles)

Example: 2-cycle multiply
mult c d e
add f g h

8dinsdag 13 november 2012

How to overcome
They result from contention
⇒ they can be removed by adding more resources

register write hazard: add more write ports

execution unit: add more execution units

Example: CDC 6600 (1963)
10 units, 4 write ports, only FP div not pipelined

Note:

more resources = more cost (area, power)

9dinsdag 13 november 2012

Superscalar processors
Introduction / overview

10dinsdag 13 november 2012

Pipelining - summary
Depth of pipeline - Superpipelining

further dividing pipeline stages increases frequency

but introduces more scope for hazards

and higher frequency means more power dissipated

Number of functional units - Scalar pipelining - avoids waiting for long operations to complete

instructions fetched and decoded in sequence

multiple operations executed in parallel

Concurrent issue of instructions - Superscalar ILP

multiple instructions fetched and decoded concurrently

new ordering issues and new data hazards

11dinsdag 13 november 2012

Scalar vs. superscalar

in-order issue

concurrent issue,
possibly out of order

Most “complex” general-purpose processors are superscalar

12dinsdag 13 november 2012

Basic principle
Example based on simple 3-stage pipeline

1
2 1
3 2 1

3 24
35 4

5 4
Scalar pipeline, max IPC = 1

tim
e

stages
1+2

tim
e

stages

3+4 1+2

3+4 1+25

3+45
5

Superscalar, max IPC ≥ 1

13dinsdag 13 november 2012

Instruction-level parallelism
ILP is the number of instructions issued per cycle (issue parallelism / issue width)

IPC the number of instructions executed per cycle is limited by:

the ILP

the number of true dependencies

the number of branches in relation to other instructions

the latency of operations in conjunction with dependencies

Current microprocessors: 4-8 max ILP, 12 functional units, however IPC of typically 2-3

14dinsdag 13 november 2012

Aspects of superscalar execution

parallel fetch decoding and issue

100s of instructions in-flight simultaneously

out-of-order execution and sequential consistency

Exceptions and false dependencies

finding parallelism and scheduling its execution

application specific engines, e.g. SIMD & prefetching

15dinsdag 13 november 2012

Instruction policies
& related hazards

Instruction issue vs completion, new data hazards

16dinsdag 13 november 2012

Instruction issue basics
Just widening of the processor’s pipeline does not necessarily improve its performance

The processor’s policy in fetching, decoding and executing
instructions also has a significant effect on its performance

The instruction issue policy is determined by its look-ahead capability in the
instruction stream

For example with no look-ahead, if a resource conflict halts instruction fetching the
processor is not able to find any further instructions until the conflict is resolved

If the processor is able to continue fetching instructions it may find an independent
instruction that can be executed on a free resource out of programmed order

Policies characterized by issue order and completion order

17dinsdag 13 november 2012

In-order issue, in-order completion

Simplest, unusual with superscalar designs

Instructions issued in exact program order with results
written in the same order

This is shown here for comparison purposes only, as very
few pipelines use in-order completion

18dinsdag 13 november 2012

In-order issue, in-order completion

Assume a 3 stage execution in a pipeline that can issue two instructions, execute three instructions and write
back two results every cycle… assume:

I1 requires 2 cycles to execute

I3 and I4 are in conflict for a functional unit

I5 depends on the value produced by I4

I5 and I6 are in conflict for a functional unit

19dinsdag 13 november 2012

In-order issue, out-of-order completion

Out-of-order completion, improves performance of instructions
with long latency operations, such as loads and floating point

The modifications made to execution are:

any number of instructions allowed in the execution stage up
to the total number of pipeline slots (stages × functional units)

instruction issue is not stalled when an instruction takes more
than one cycle to complete

20dinsdag 13 november 2012

In-order issue, out-of-order completion

Again assume a processor issues two instructions, executes three instructions and writes back two results
every cycle

I1 requires 2 cycles to execute

I3 and I4 are in conflict for a functional unit

I5 depends on the value produced by I4

I5 and I6 are in conflict for a functional unit

21dinsdag 13 november 2012

In-order issue, out-of-order completion

In a processor with out-of-order completion, instruction issue is stalled when:

There is a conflict for a functional unit

An instruction depends on a result that is not yet computed - a data
dependency

can use register specifiers to detect dependencies between instructions and
logic to ensure synchronisation between producer and consumer instructions
– e.g. scoreboard logic, cf CDC 6600

Also: a new type of dependency caused by out-of-order completion:
the output dependency

22dinsdag 13 november 2012

Output dependencies
Consider the code to the right:

the 1st instruction must be completed before the 3rd,
otherwise the 4th instruction may receive the wrong result!

this is a new type of dependency
caused by allowing out-of-order completion

the result of the 3rd instruction has
an output dependency on the 1st instruction

the 3rd instruction must be stalled if its result may be
overwritten by a previous instruction which takes longer to
complete

23dinsdag 13 november 2012

Out-of-order issue, out-of-order completion

In-order issue stalls when the decoded instruction has:

a resource conflict, a true data dependency or an output dependency on an uncompleted instruction

this is true even if instructions after the stalled one can execute

to avoid stalling, decode must be decoupled from execution

Conceptually out-of-order issue decouples the decode/issue stage from instruction execution

it requires an instruction window between the decode and execute stages
to buffer decoded or part pre-decoded instructions

this buffer serves as a pool of instructions giving the processor a look-ahead facility

instructions are issued from the buffer in any order,
provided there are no resource conflicts or dependencies with executing instructions

24dinsdag 13 november 2012

Out-of-order issue, out-of-order completion

Again assume a processor issues two instructions, executes three instructions and writes back two results every
cycle but now has a issue window of at least three instructions

I1 requires 2 cycles to execute

I3 and I4 are in conflict for a functional unit

I5 depends on the value produced by I4

I5 and I6 are in conflict for a functional unit

25dinsdag 13 november 2012

Anti-dependencies
Out-of-order issue introduces yet another dependency - called
an anti-dependency

the 3rd instruction can not be completed until the second
instruction has read its operands

otherwise the 3rd instruction may overwrite the operand
of the 2nd instruction

we say that the result of the 3rd instruction has an anti-
dependency on the 1st operand of the 2nd instruction

this is like a true dependency but reversed

26dinsdag 13 november 2012

Summary of data hazards
We have now have seen three kinds of dependencies

True (data) dependencies … read after write (RAW)

Output dependencies … write after write (WAW) - out of order completion

Anti dependencies … write after read (WAR) - out of order issue

Only true dependencies reflect the flow of data in a program and should require the pipeline to stall

when instructions are issued and completed out of order,
the one-to-one relationship between registers and values at any given time is lost

new dependencies arise because registers hold different values from independent computations at
different times – they are resource dependencies

Resource dependencies are really just storage conflicts and can be eliminated by
introducing new registers to re-establish the one-to-one relationship between registers and values at a given time

27dinsdag 13 november 2012

