
Universiteit van Amsterdam

TOWARDS SCALABLE
IMPLICIT COMMUNICATION
AND SYNCHRONIZATION

Raphael Poss
Chris Jesshope

AMP’10, Toronto, June 2010
woensdag 30 juni 2010

INTEL’S SINGLE-CHIP CLOUD

woensdag 30 juni 2010

LARGER SYSTEMS

RAM /
Cache

RAM /
Cache

RAM /
Cache

RAM /
Cache

I / O

RAM /
Cache

RAM /
Cache

I / O

(Intel Knight’s corner)(NVIDIA’s GP100)

woensdag 30 juni 2010

FUTURE COMPUTING
SYSTEMS

• Scale: now 100s of cores, tomorrow 100.000s and more

• Space heterogeneity: general-purpose vs. specialized, different
ISAs, heterogeneity in primitives (communication, synchr.)

• Time heterogeneity: varying characteristics over time; mapping,
routing, distribution and time scheduling become dynamic

• Synchronization and all forms of non-local knowledge
propagation have a non-negligible cost

woensdag 30 juni 2010

THE CHALLENGE OF
HETEROGENEITY

• Granularity mismatches:

• Between levels, now distinct programming methodologies
eg. CUDA vs. MPI, compiler-driven vectorization vs. separate coordination

• Dynamic unfolding of concurrency over dynamically evolving
granularities, re-clustering must be automatic and fast

• Heterogeneity in algorithm representations does not scale!
... unless automatically generated from a common origin

woensdag 30 juni 2010

USE CASE : OCR

• 2 DSPs, 4 FPGAs, 1GPCPU

• 2 APIs, 4 ISAs, 3 data layouts

• 3 concurrency granularities

• Desired:
one program per
algorithm
+ specialization to targets

woensdag 30 juni 2010

STRATEGY DURING
PROGRAM WRITING

• Provide information but leave flexibility
to the environment (compiler, rt, OS, hw)

• Provide/use constructs that separate concerns:
concurrency vs. scheduling, data dependencies vs. communication

• Provide/use specializable semantics, express patterns
re-scheduling of code paths, aggregatable communication patterns

• Provide/use handles to scope synchronization
both for precedence and exclusion

woensdag 30 juni 2010

STRATEGY FROM THE
RUNTIME SIDE

• Use the information, transform when necessary:

• Pick resources on-demand upon concurrency, reconfigure
(expression of concurrency must be resource agnostic)

• Use information over synchronization scopes and data
dependency endpoints to specialize network routing (they
must be derivable from programs automatically)

• Tolerate granularity mismatches at run-time by specialization
(language semantics must allow this) — not API abstractions!

woensdag 30 juni 2010

EXAMPLES: SPECIALIZABILITY
(DIVERSITY OF PRIMITIVES)

Message passing

grab A, B, channel x, y
p1 = delegate@A { send(y, f(recv(x))) }
p2 = delegate@B { send(y, g(recv(x))) }

send(x, u); a = recv(y) + recv(y);

Shared memory

alloc x, y;
p1 = fork(f, u, &x);
p2 = fork(g, u, &y);

join(p1); join(p2); a = x + y;hard

Specializable
concurrency

a = async f(u) + async g(u)

simpler simpler

woensdag 30 juni 2010

EXAMPLES: SPECIALIZABILITY
(REDUCING CONCURRENCY)

Specializable code Reduced concurrency

parallel for(i in s) do(i) for(i in s) do(i)

a = async f(u) + async g(v) a = f(u) + g(v)

f(s, x) { critical upd(s) }
f(s, a) | f(s, b)

f(s, x) { upd(s) }
f(s, a) ; f(s, b)

woensdag 30 juni 2010

EXAMPLE:
SCOPING EXCLUSION
Without scope With scope

	

 f(s, x) {
	

 	

 ...
	

 	

 critical {
	

 	

 upd(s, x);
	

 	

 }
	

 	

 ...
	

 }
	

 ... f(s, a) | f(s, b) ...

	

	

 f(state s, x) {
	

 	

 ...
	

 	

 exclusive_with(s) {
	

 	

 	

 upd(s, x);
	

 	

 }
	

 	

 ...
	

 }
	

 ... f(a) | f(b) : sharing (s) ...

No information about affinity
between asynchronous processes

Information about affinity is provided
at the point concurrency is created

woensdag 30 juni 2010

NEW CHALLENGES

• P < N vs. N > P: how to recognize? Need formal systems to
describe heterogeneous resources and dynamic concurrency,
and evaluate bindings at multiple levels of granularities

• Specialization: how, who and when? Cooperation between
compilers, concurrency runtimes, operating systems, hardware

• Expressivity: how to use implicit constructs and still provide
enough information for efficient scheduling and specialization?
Fine-grained data dependencies and synchronization scopes

woensdag 30 juni 2010

RESEARCH DIRECTIONS

• Extend languages and determine best practices to propagate
more knowledge from programs to infrastructure; focus on:

• functional languages (SAC, Haskell), dataflow (Cilk, SVP)

• separate coordination vs. computation (S-NET)

• Use this knowledge and combine efficient space scheduling
(for P > N) with specializability (for N > P)

woensdag 30 juni 2010

THANK YOU.

woensdag 30 juni 2010

EXTRA SLIDES
(COMPLEMENTS)

woensdag 30 juni 2010

CONCURRENCY OVERHEADS

Concurrency
expressed

Resources Cost Overhead

A ; B ; C P = 1 A + B + C 0

A ; B ; C P = 2 A + B + C 1P unused

(A | B) ; C P = 2 m(A, B) + s + C s

(A | B) ; C P = 1 A+c+B+c+C c+c

woensdag 30 juni 2010

COMMUNICATION
OVERHEADS

Communication
expressed Resources Cost Overhead

A(w.x) ; B(r.x) P = 1 A + B + d d

A(w>x) | B
(r<x)

P = 2
L = 1

m(A, B) + L + s L+s

A(w>x) | B
(r<x)

P = 1
L = 1

A + c + B + L c+L

A(w>x) | B
(r<x)

P = 2
L = 0

A + c + B + d* c+d*
1P unused

woensdag 30 juni 2010

TERMINOLOGY

Concurrency Run-time
parallelism

Resource
parallelism

non-determinism
with regards to the

order in which
events may occur

degree to which
events actually

occur
simultaneously

amount of hw/sw
support for
independent
processing

woensdag 30 juni 2010

