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Agenda

@ SVP & Apple-CORE
@ Realizations & evolution
@ Key concepts (selected)
@ Current “hot” topics

® Research directions
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SVP & Apple-CORE
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Origins

@ 1996-present: connect many D-RISC cores
together = "Microgrid”

@ NWO Microgrids (2005-present):
Architecture concepts, uTC and simulations

@ EU ATHER (2007-2009): Reconfigurability
and resource abstractions

r.n,’[nn X (]
N
4

g \g l;‘ 7
““annns’ 4

nn Y @

dinsdag 2 augustus 2011

!i p
7
® 0

o0
E L\
o™



The original SVP
in a nutshell

@ Unit of concurrency: families of threads

@ The cluster is the processor: entire families created at once over
multiple cores

@ Both internal and external parallelism available in hw (ILP, SMT
and multi-core parallelism)

@ The “create” primitive can be used in programs to define families,
"sync” to bulk synchronize

@ Split-phase asynchrony assumed to be the norm for all operations

@ Use requires new programming model (new language, new
compilation methods)
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SVP functional
concurrency

Scheduling unit

Scheduling unit

Scheduling unit
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SVP replicated
concurrency
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Child Child
Pa re nt thread thread

thread
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SVP Pipelined concurrency

independe independe independe
nt part nt part

Parent
th e ad depende depende depende
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Parent-child relationship in
heterogeneous tasks

elseif elseif
i=1 i=2
create create create
(i=0..2)

control()




Moving up

@ EU Apple-CORE (2008-2011):

@ "Can the Microgrid be programmed
efficiently?”; sets uTC as an “intermediate
language”

@ Goal: automatically parallelize existing
code (C, SAC) while translating to uTC

@ Goal: Show applicability to real-world
applications
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Apple-CORE strategy
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Compilers, OS and runfime support
(for retargeting and resource mapping)
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Apple CORE strategy
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Apple CORE strategy
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Apple CORE strategy
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Apple CORE strategy
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Apple-CORE strategy
Compute Kernels

parallelizing ' manual
compilers : (re)tuning
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Apple-CORE strategy

Program assemblies

(composition languages)
parallelizing " manual
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Apple-CORE strategy
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Duality in SVP
(original view)

@ "SVP is dual, a combination of a programming
model (provides concepts and contracts) and
an architecture model (provides abstract
mechanisms)”

@ The Microgrid and uTC-ptl (higher-level
simulation) are implementations of SVP
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Moving up (cont.)

@ Cleaning up (2008-2009): Programming and
architecture models stabilized, described and
specified separately

@ Beefing up (2009-2010):
@ Compiler toolchains actually useable

@ OS+compiler support for resource
deadlocks, mutual exclusion, arbitrary
inter-thread communication
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ple-CORE foreground

Design guidelines for New machine
fine-grained model and

hardware support for
dataflow scheduling

exemplified by

programming
strategies

enabled by

new languages
extensions: enabled by
uTC, SL

e FC
1 ™
| =

Microthreaded -
hardware m e existing

languages:
Microgrid C, SAC
System services
Language run-time
systems A

& new dataflow
for massive concurrency

used by execution

stragegies
and cgg:an ggﬁ;srators Demo and benchmark
' i applications
for fine-grained translated by pp

dataflow ISA

generate code for

I~ upported by

evaluated by

Cycle-accurate Fine grained
machine simulation m measurement
of a Microgrid infrastructure
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Apple-CORE results

@ Concurrency within cores provide good latency
tolerance - assuming enough threads

@ Distribution of work across cores is technically
easy and can be achieved at extremely low
latencies (few cycles)

- the difficult problem is placement decision

@ We have designed a full chip architecture
= custom in-order microthreaded RISC cores on a
custom NoC with custom memory network
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JUST BECAUSE YOU ARE UNIQUE DOES NOT MEAN YOU ARE USEFUL

Pause and reflection




Realizations .

@ There is more to a usable system than a processor (or network
thereof) and code generator

@ Embedding dataflow + microthreading into a core is a disruptive
architectural change

- too easy to under-estimate compilation issues
(utc was a management failure, had to re-design mid-project)

@ The interface between hardware and software is not only a
matter of language, OS syscalls and standard user library

- too easy to under-estimate integration issues
(an SVP-only system prevented reuse of benchmark code)
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Realization 1
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Realization 1”

Today:

Expectations  Standard practices
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Realization 2

Assembler Regalloc + N
% Static scheduling
Lan

uage
Linker front-ends

S

libraries Software

Driver
Device . ?
, interfaces
Drivers Langlage ﬁ
anguage

Hardware
guy

y__ and library guy

: documentation
Introspection Resource

interfaces managers System
. documentation
Madchine

access Debuggers

interface

Tool chain
packaging

7 W17 /
Shells and al%o’rher system and user
tools and utilities
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Evidence from the A-C
experience

OS/Library components

Relative sizes

Component Objects _[Functions|Code words |
Lbcmath 165 238 13424
Lbcsidost 13 13 5040
Libcdimaloc 2 19 3600

Libc-string 26 26 1968

Lbomisc ~ |9 = [s8 -~ [1728
Fginit |~ T2 A o0

Libmg-benchmarks 1072
Libmg-SEP
2 P

Libc-malloc-mg 832

DY@ Ha e

M Libc-dtoa-strtod B Libc-math ] Libc-stdout M Libc-dimalloc
B Libc-string ] Libc-misc B mginit 7] Libmg-benchmarks
B Libmg-SEP [ Libc-malloc-mg M Libsl-misc
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Realization 2

@ Linguae francae

® C/POSIX

(not your textbook C: inline assembly, compiler extensions)

@ Java/TVM
@ CIL/CLR (.NET)

@ Everything else either uses or implements these

@ Pick your lingua franca = pick your community
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How to pitch novel
architfectures?

@ (Assuming the hardware is ready for use)

@ Implement a compiler for a restricted dialect of C with minimal
library support

- tractable, but expect: "meh... what can you do with it?”
- the bane of architecture research: underestimate sw integration

@ Implement a complete GCC target then port an existing operating
system with bootloader, hw drivers, file system, shell and utilities

- untractable, unless new hw = old hw (fo maximize software reuse)

@ What else?

N
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Heterogeneous systems

@ Run the linguae
francae on an
existing design

@ Embed the existing

design as component
of a D-SoC

® Define standard

protocols for control
and communication
. y between cores
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Evolution / transition

@ Shift from core architecture design
to system design and integration

@ Innovate with protocols and language integration
instead of machine primitives and programming
models
(hint: tcp/ip too heavy for low-latency on-chip interactions)

@ New pitch:

"SVP is a protocol and architecture for the
management of execution units on a chip”
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Proposed base semantics

o Dataflow synchronization cells to support split-phase asynchrony
between threads (int. concurrency) and components (ext. concurrency)

@ NoC messages between and within cores with fixed semantics:

o allocate/release to manage execution resources

@ create to trigger execution of a family
@ sync to bulk-synchronize a family

@ rput/rget to access synchronizers remotely

@ Multiple ISA infegration strategies: adaptation, extension, embedding

@ Responsibility for consistent use pushed up to the software stack, not
constrained by model any more
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Granularity

@ Code portability = distributing different computation grain
sizes

@ execution efficiency proportional to grain size, inversely tfo
cost of managing concurrency

@ Also have to consider the communication cost of distribution

add concurrency
o sequentialise
granulari

relatively easy
(assuming specializable language!)

sequential

code

difficult and target specific
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Granularity

@ Code portability = distributing different computation grain
sizes

@ execution efficiency proportional to grain size, inversely tfo
cost of managing concurrency

@ Also have to consider the communication cost of distribution

This is easier than
targeting a given
granularity
add concurrency

a sequentialise

sequentia

code

relatively easy
(assuming specializable language!)

difficult and target specific
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Mutual exclusion

@ Mutual exclusion is required to support controlled
non-defterminism

@ DSoC memory is asynchronous, only weakly

consistent might not be usable to implement
atomics

@ the SVP way is to define a "mutex place” that
serialises all requests to create tasks at that
place (Dijkstras secretaries) — same protocol

@ These can be used for multiple synchronization goals,
e.g. I/0, semaphores, resource allocation, etc.

@ As such they are in the domain of systems
programming i.e. the concurrency engineer
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Current “hot” topics




Inter-thread
communication

® Communication channels beween threads:

@ OK for register-sized channels: use i-
structure hardware registers

@ Not OK for larger items: they must fit
through memory ... which is asynchronous

@ Which memory model? How to use it in
programs? Non-shared address spaces?
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Inter-thread
communication

® Some directions:

@ Programming model: make all
communication visible to the compiler

@ Implementation using shared memory:
synchronize memory updates via
registers

@ Distributed systems: explicit messaging
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Resource p—

5% A
deadlocks 8

@ Shortage of memory: not our problem (yet)

@ Shortage of synchronizers: spread threads
on multiple cores - OK

@ Shortage of thread entries: create less
threads per core - OK

@ Shortage of family entries: delegate ... where
to? or sequentialize ... how?
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Resource =
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deadlocks i

® Some directions:

@ Rebalance concurrency trees early (by rewriting
code for family creates)

@ Delegation (to other places on the SoC)

@ Automatic sequentialization, requires both:
- feedback from hardware about resource

availability
- sequentializability of concurrency pattterns in
languages
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Research directions
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Follow-ups
to Apple-CORE

@ How fo integrate the protocol in existing and future core
architectures / ISAs

- in a way that minimize disruption in software stacks?

@ Is there a case for multiple ISAs in the same chip

- and how to manage mulfiple codes in the same program?

@ How to automate placement over multiple cores

- with a placement latency comparable to (or lower than)
the operation latency?
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Software engineering
ADVANCE

@ "What information should be available in
programs, and how to represent resources, to
allow efficient mapping and scheduling to
computing resources?”
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Software engineering
ADVANCE

@ Program:

@ Capture extra-functional requirements in
programs

@ Virtualize hardware and modelize
resources in heterogeneous environments

@ Design mapping and feedback mechanisms
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ADVANCE at a glance

Compilation methods

Resource management Hardware virtualisation layer

Dynamic and/or heterogeneous hardware pool
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ADVANCE Interactions

Compilation Route

VRNet Object Object Hardware

Compiler +SVP > Mapping +SVP —|  Platform
+ CAL
A >

Dynamic

Analysis CAL l Adaptation _
Route Markov Runtime

Model N Measurement

I
Statistical Performance I
Analysis < Naareaated | Aggregation <
M ggreg Measurements
easurements + SVP

+ SVP

Feedback Route
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Software engineering
issues (ADVANCE)

@ Partner technology: S-NET

(coordination via SISO streams and functional boxes)

@ The position of SVP (WIP):

@ Simplify the analysis of requirements of a S-NET
network implemented using our protfocol

@ Simplify mapping by imposing constraints on
scheduling and communication patterns

@ Establish T/L/J models for both internal and
external concurrency on heferogeneous cores
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Now what?

Further discussion occurs now!
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