An architecture and
protocol for the
management of

concurrency on DSoCs

Overview - Summer 2011

yoore ¢

214

@ <@
7 RN
PR




Agenda

@ SVP & Apple-CORE
@ Realizations & evolution
@ Key concepts (selected)
@ Current “hot” topics

® Research directions

rﬂ,Tm X ()
N
4

g 8 %
i 5 >
A l§I i

finnn Y @

dinsdag 2 augustus 2011

!I p
7
® 0

o0
i L\
o™



SVP & Apple-CORE

dinsdag 2 augustus 2011



Origins

@ 1996-present: connect many D-RISC cores
together = "Microgrid”

@ NWO Microgrids (2005-present):
Architecture concepts, uTC and simulations

@ EU ATHER (2007-2009): Reconfigurability
and resource abstractions

r.n,’[nn X (]
N
4

g \g l;‘ 7
““annns’ 4

nn Y @

dinsdag 2 augustus 2011

!i p
7
® 0

o0
E L\
o™



The original SVP
in a nutshell

@ Unit of concurrency: families of threads

@ The cluster is the processor: entire families created at once over
multiple cores

@ Both internal and external parallelism available in hw (ILP, SMT
and multi-core parallelism)

@ The “create” primitive can be used in programs to define families,
"sync” to bulk synchronize

@ Split-phase asynchrony assumed to be the norm for all operations

@ Use requires new programming model (new language, new
compilation methods)

rﬂ,Tm X e .0
" W el
S = A
“annns’ &/é\°.

dinsdag 2 augustus 2011



SVP functional
concurrency

Scheduling unit

Scheduling unit

Scheduling unit

dinsdag 2 augustus 2011



SVP replicated
concurrency

A

Child Child
Pa re nt thread thread

thread

% A S
dinsdag 2 augustus 2011



SVP Pipelined concurrency

independe independe independe
nt part nt part

Parent
th e ad depende depende depende

nt part nt part nt part

wilan X .0
£ \V A~
£ & e

“Nannnr’

dinsdag 2 augustus 2011



Parent-child relationship in
heterogeneous tasks

elseif elseif
i=1 i=2
create create create
(i=0..2)

control()




Moving up

@ EU Apple-CORE (2008-2011):

@ "Can the Microgrid be programmed
efficiently?”; sets uTC as an “intermediate
language”

@ Goal: automatically parallelize existing
code (C, SAC) while translating to uTC

@ Goal: Show applicability to real-world
applications

dinsdag 2 augustus 2011



Apple-CORE strategy

Compute kernels




Apple-CORE strategy
Compute kernels

{ Many cores J




Apple CORE strategy

Compilers, OS and runfime support
(for retargeting and resource mapping)

{ Many cores J

dinsdag 2 augustus 2011



Apple CORE strategy

Compilers, OS and runfime support
(for retargeting and resource mapping)

{ Many cores J

dinsdag 2 augustus 2011



Apple CORE strategy

p
Compute kernels
\(re’rarge’rable concurrent SVP IR) )

Compilers, OS and runfime support
(for retargeting and resource mapping)

{ Many cores J

X e .0
d 51 &b
dinsdag 2 augustus 2011



Apple CORE strategy

o
Compute kernels
\(re’rarge’rable conculfren’r SVP IR) |
BT
Compilers, OS and runtime support
(for retargeting and resource mapping)

{ Many cores J

X e .0
d 51 &b
dinsdag 2 augustus 2011



Apple CORE strategy

o
Compute kernels
\(re’rarge’rable conculfren’r SVP IR) |
BT
Compilers, OS and runtime support
(for retargeting and resource mapping)

{ Many cores J

X e .0
d 51 &b
dinsdag 2 augustus 2011



Apple CORE strategy

parallellzmg
compilers

o
Compute kernels
\(re’rarge’rable conculfren’r SVP IR) |
BT
Compilers, OS and runtime support
(for retargeting and resource mapping)

{ Many cores J

X e .0
d 51 &b
dinsdag 2 augustus 2011



Apple CORE strategy

parallellzmg
compilers

o
Compute kernels
\(re’rarge’rable conculfren’r SVP IR) |
BT
Compilers, OS and runtime support
(for retargeting and resource mapping)

{ Many cores J

X e .0
d 51 &b
dinsdag 2 augustus 2011



Apple CORE strategy

parallellzmg ! manual
compilers : (re)tuning

~

o
Compute kernels
\(re’rarge’rable conculfren’r SVP IR) |
BT
Compilers, OS and runtime support
(for retargeting and resource mapping)

{ Many cores J

X e .0
d 51 &b
dinsdag 2 augustus 2011



Apple-CORE strategy
Compute Kernels

parallelizing ' manual
compilers : (re)tuning

~

: Compute kernels

 (retargetable concurrent SVP IR)

BT
Compilers, OS and runfime support
(for retargeting and resource mapping)

Current
{ Many cores J

dinsdag 2 augustus 2011



Apple-CORE strategy
Compute Kernels

parallelizing ' manual
compilers : (re)tuning

~

: Compute kernels

 (retargetable concurrent SVP IR)

BT
Compilers, OS and runfime support
(for retargeting and resource mapping)

/ \
Current
{ Many cores J

dinsdag 2 augustus 2011



Apple-CORE strategy
Kernels

parallelizing " manual
compilers : (re)tuning

~

: Compute kernels

 (retargetable concurrent SVP IR)

\ _
Compilers, OS and runfime support
(for retargeting and resource mapping)

\
g B

dinsdag 2 augustus 2011



Apple-CORE strategy
Kernels

parallelizing " manual
compilers : (re)tuning

~

-
Compute kernels
k(refarge’rable concurrent SVP IR) )

. .
Compilers, OS and runtime support
(for retargeting and resource mappmg)

//

Current @Eﬁi?i@ of
- Many j

dinsdag 2 augustus 2011



Apple-CORE strategy
Kernels

parallelizing " manual
compilers : (re)tuning

~

-
Compute kernels
k(refarge’rable concurrent SVP IR) )

. .
Compilers, OS and runtime support
(for retargeting and resource mappmg)

//

Current @Eﬁi?i@ of e
- Many j

dinsdag 2 augustus 2011



Apple-CORE strategy

Program assemblies

(composition languages)
parallelizing " manual
compilers (re)’runlng

~

Compufe kernels

_(retargetable concurrent SVP IR)
— |

Compilers, OS and runtime support

(for retargeting and resource mappmg)

//

@,mﬁ? @Lﬁm@?

x XV
2mnmnnle aleald X '%v{
<A ];’-.“.A [. ] | - é:\;? P A AR y :’ffg : StatArch

dinsdag 2 augustus 2011



Apple-CORE strategy

assemblies

(composition languages)
parallelizing " manual
compilers (re)’runlng
A L " o
Compufe kernels Program assemblies
_(retargetable concurrent SVP IR) (SVP-aware composition languages)

\_

. .
Compilers, OS and runtime support
(for retargeting and resource mappmg)

//

@Lm}@nii @Lﬁi@?@@{?

apble ~Ore lgl ﬁ%/{/‘:
= ]: [ . i .'of?//%\‘s‘ StatArch

dinsdag 2 augustus 2011



Apple-CORE strategy

assemblies

(composition languages)
parallelizing " manual
compilers (re)’runlng
A L " o
Compufe kernels Program assemblies
(retargetable concurrent SVPIR) |  { (SVP-aware composition languages)
B L

Compilers, OS and runtime support
(for retargeting and resource mappmg)

//

@Lm}@nii @Lﬁi@?@@{?

apble ~Ore lgl ﬁ%/{/‘:
= ]: [ . i .'of?//%\‘s‘ StatArch

dinsdag 2 augustus 2011



Apple-CORE strategy

assemblies

(composition languages)
parallelizing " manual :
compilers (re)’runlng -
2 @ ¥ m—
Compufe kernels Program assemblies
(retargetable concurrent SVPIR) |  { (SVP-aware composition languages)
B L

Compilers, OS and runtime support
(for retargeting and resource mappmg)

//

@Lm}@nii @Lﬁi@?@@{?

apble ~Ore lgl ﬁ%/{/‘:
= ]: [ . i .'of?//%\‘s‘ StatArch

dinsdag 2 augustus 2011



Duality in SVP
(original view)

@ "SVP is dual, a combination of a programming
model (provides concepts and contracts) and
an architecture model (provides abstract
mechanisms)”

@ The Microgrid and uTC-ptl (higher-level
simulation) are implementations of SVP

dinsdag 2 augustus 2011



Moving up (cont.)

@ Cleaning up (2008-2009): Programming and
architecture models stabilized, described and
specified separately

@ Beefing up (2009-2010):
@ Compiler toolchains actually useable

@ OS+compiler support for resource
deadlocks, mutual exclusion, arbitrary
inter-thread communication

rﬂ,Tm X ()
£ B I Ay ]
= e 7
“annns’ ‘/é

dinsdag 2 augustus 2011

!I p
7
® 0

o0
i L\
o™



ple-CORE foreground

Design guidelines for New machine
fine-grained model and

hardware support for
dataflow scheduling

exemplified by

programming
strategies

enabled by

new languages
extensions: enabled by
uTC, SL

e FC
1 ™
| =

Microthreaded -
hardware m e existing

languages:
Microgrid C, SAC
System services
Language run-time
systems A

& new dataflow
for massive concurrency

used by execution

stragegies
and cgg:an ggﬁ;srators Demo and benchmark
' i applications
for fine-grained translated by pp

dataflow ISA

generate code for

I~ upported by

evaluated by

Cycle-accurate Fine grained
machine simulation m measurement
of a Microgrid infrastructure

dinsdag 2 augustus 2011



Apple-CORE results

@ Concurrency within cores provide good latency
tolerance - assuming enough threads

@ Distribution of work across cores is technically
easy and can be achieved at extremely low
latencies (few cycles)

- the difficult problem is placement decision

@ We have designed a full chip architecture
= custom in-order microthreaded RISC cores on a
custom NoC with custom memory network

_ s
uun
x (% x
(]
A
| S\
s

dinsdag 2 augustus 2011



JUST BECAUSE YOU ARE UNIQUE DOES NOT MEAN YOU ARE USEFUL

Pause and reflection




Realizations .

@ There is more to a usable system than a processor (or network
thereof) and code generator

@ Embedding dataflow + microthreading into a core is a disruptive
architectural change

- too easy to under-estimate compilation issues
(utc was a management failure, had to re-design mid-project)

@ The interface between hardware and software is not only a
matter of language, OS syscalls and standard user library

- too easy to under-estimate integration issues
(an SVP-only system prevented reuse of benchmark code)

lan X )
{5 W el
S = 7L
“annne’ &/é\°.

dinsdag 2 augustus 2011



Realization 1

Shﬁ?
responsnblll’ry ‘

(\ Y 74 o
Tomorrow Future architectures

X
applecOrO oy ii%é B

"Today”

Extend
languages

\

dinsdag 2 augustus 2011



Realization 1”

Today:

Expectations  Standard practices
amr»lecorO & ?ﬁﬁé StatArch

dinsdag 2 augustus 2011



Realization 2

Assembler Regalloc + N
% Static scheduling
Lan

uage
Linker front-ends

S

libraries Software

Driver
Device . ?
, interfaces
Drivers Langlage ﬁ
anguage

Hardware
guy

y__ and library guy

: documentation
Introspection Resource

interfaces managers System
. documentation
Madchine

access Debuggers

interface

Tool chain
packaging

7 W17 /
Shells and al%o’rher system and user
tools and utilities

dinsdag 2 augustus 2011



Evidence from the A-C
experience

OS/Library components

Relative sizes

Component Objects _[Functions|Code words |
Lbcmath 165 238 13424
Lbcsidost 13 13 5040
Libcdimaloc 2 19 3600

Libc-string 26 26 1968

Lbomisc ~ |9 = [s8 -~ [1728
Fginit |~ T2 A o0

Libmg-benchmarks 1072
Libmg-SEP
2 P

Libc-malloc-mg 832

DY@ Ha e

M Libc-dtoa-strtod B Libc-math ] Libc-stdout M Libc-dimalloc
B Libc-string ] Libc-misc B mginit 7] Libmg-benchmarks
B Libmg-SEP [ Libc-malloc-mg M Libsl-misc

dinsdag 2 augustus 2011



Realization 2

@ Linguae francae

® C/POSIX

(not your textbook C: inline assembly, compiler extensions)

@ Java/TVM
@ CIL/CLR (.NET)

@ Everything else either uses or implements these

@ Pick your lingua franca = pick your community

.n,/[nn X o0
B l;l ?_yfgf.
7N

annns” &/é\°.

dinsdag 2 augustus 2011

W -
yuin



How to pitch novel
architfectures?

@ (Assuming the hardware is ready for use)

@ Implement a compiler for a restricted dialect of C with minimal
library support

- tractable, but expect: "meh... what can you do with it?”
- the bane of architecture research: underestimate sw integration

@ Implement a complete GCC target then port an existing operating
system with bootloader, hw drivers, file system, shell and utilities

- untractable, unless new hw = old hw (fo maximize software reuse)

@ What else?

N
dinsdag 2 augustus 2011



Heterogeneous systems

@ Run the linguae
francae on an
existing design

@ Embed the existing

design as component
of a D-SoC

® Define standard

protocols for control
and communication
. y between cores

XA
¥ R X N\
apple%:i‘}(’(’r(’ l{' :?gi: StatArch

dinsdag 2 augustus 2011




Evolution / transition

@ Shift from core architecture design
to system design and integration

@ Innovate with protocols and language integration
instead of machine primitives and programming
models
(hint: tcp/ip too heavy for low-latency on-chip interactions)

@ New pitch:

"SVP is a protocol and architecture for the
management of execution units on a chip”

_ s
uun
x (% x
(]
A
| S\
s

n -
dinsdag 2 augustus 2011



Proposed base semantics

o Dataflow synchronization cells to support split-phase asynchrony
between threads (int. concurrency) and components (ext. concurrency)

@ NoC messages between and within cores with fixed semantics:

o allocate/release to manage execution resources

@ create to trigger execution of a family
@ sync to bulk-synchronize a family

@ rput/rget to access synchronizers remotely

@ Multiple ISA infegration strategies: adaptation, extension, embedding

@ Responsibility for consistent use pushed up to the software stack, not
constrained by model any more

rﬂ,Tm X e .0
" W el
S = 70N
“annns’ &/é\°.

dinsdag 2 augustus 2011



! o
— L. ?#’
- . ;“‘. e e s
- — -
—

-

)

B

Key concepts (selected)

dinsdag 2 augustus 2011



Granularity

@ Code portability = distributing different computation grain
sizes

@ execution efficiency proportional to grain size, inversely tfo
cost of managing concurrency

@ Also have to consider the communication cost of distribution

add concurrency
o sequentialise
granulari

relatively easy
(assuming specializable language!)

sequential

code

difficult and target specific

dinsdag 2 augustus 2011



Granularity

@ Code portability = distributing different computation grain
sizes

@ execution efficiency proportional to grain size, inversely tfo
cost of managing concurrency

@ Also have to consider the communication cost of distribution

add concurrency

a sequentialise

sequentia

code

relatively easy
(assuming specializable language!)

difficult and target specific

dinsdag 2 augustus 2011



Granularity

@ Code portability = distributing different computation grain
sizes

@ execution efficiency proportional to grain size, inversely tfo
cost of managing concurrency

@ Also have to consider the communication cost of distribution

This is easier than
targeting a given
granularity
add concurrency

a sequentialise

sequentia

code

relatively easy
(assuming specializable language!)

difficult and target specific

dinsdag 2 augustus 2011



Mutual exclusion

@ Mutual exclusion is required to support controlled
non-defterminism

@ DSoC memory is asynchronous, only weakly

consistent might not be usable to implement
atomics

@ the SVP way is to define a "mutex place” that
serialises all requests to create tasks at that
place (Dijkstras secretaries) — same protocol

@ These can be used for multiple synchronization goals,
e.g. I/0, semaphores, resource allocation, etc.

@ As such they are in the domain of systems
programming i.e. the concurrency engineer

x °.0
" W el
= o 7N
“annns &fé\°o

dinsdag 2 augustus 2011



Current “hot” topics




Inter-thread
communication

® Communication channels beween threads:

@ OK for register-sized channels: use i-
structure hardware registers

@ Not OK for larger items: they must fit
through memory ... which is asynchronous

@ Which memory model? How to use it in
programs? Non-shared address spaces?

il ®
) & =L

]
%LTJULJ:: &/é\’.

dinsdag 2 augustus 2011



Inter-thread
communication

® Some directions:

@ Programming model: make all
communication visible to the compiler

@ Implementation using shared memory:
synchronize memory updates via
registers

@ Distributed systems: explicit messaging

% A S
dinsdag 2 augustus 2011



Resource p—

5% A
deadlocks 8

@ Shortage of memory: not our problem (yet)

@ Shortage of synchronizers: spread threads
on multiple cores - OK

@ Shortage of thread entries: create less
threads per core - OK

@ Shortage of family entries: delegate ... where
to? or sequentialize ... how?

r.n,’[nn X (]
A
4

g \g l;‘ 74
““annns’ 4

i Y @

dinsdag 2 augustus 2011

!i p
7
® 0

o0
E L\
o™



Resource =
4'*”’*“' P 4

deadlocks i

® Some directions:

@ Rebalance concurrency trees early (by rewriting
code for family creates)

@ Delegation (to other places on the SoC)

@ Automatic sequentialization, requires both:
- feedback from hardware about resource

availability
- sequentializability of concurrency pattterns in
languages

gfr.n,’[nn\e : Q&%{"

dinsdag 2 augustus 2011



Research directions

dinsdag 2 augustus 2011



Follow-ups
to Apple-CORE

@ How fo integrate the protocol in existing and future core
architectures / ISAs

- in a way that minimize disruption in software stacks?

@ Is there a case for multiple ISAs in the same chip

- and how to manage mulfiple codes in the same program?

@ How to automate placement over multiple cores

- with a placement latency comparable to (or lower than)
the operation latency?

n -
dinsdag 2 augustus 2011



Software engineering
ADVANCE

@ "What information should be available in
programs, and how to represent resources, to
allow efficient mapping and scheduling to
computing resources?”

dinsdag 2 augustus 2011



Software engineering
ADVANCE

@ Program:

@ Capture extra-functional requirements in
programs

@ Virtualize hardware and modelize
resources in heterogeneous environments

@ Design mapping and feedback mechanisms

rﬂ,Tm X ()
N
4

g 8 %
i 5 >
A l§I i

finnn Y @

dinsdag 2 augustus 2011

!I p
7
® 0

o0
i L\
o™



ADVANCE at a glance

Compilation methods

Resource management Hardware virtualisation layer

Dynamic and/or heterogeneous hardware pool

q;.n.',[nr‘E X e

s 8
%LTJULJ

dinsdag 2 augustus 2011

x(x
4
¥ ,.i.;
&~

&

[
o

o



ADVANCE Interactions

Compilation Route

VRNet Object Object Hardware

Compiler +SVP > Mapping +SVP —|  Platform
+ CAL
A >

Dynamic

Analysis CAL l Adaptation _
Route Markov Runtime

Model N Measurement

I
Statistical Performance I
Analysis < Naareaated | Aggregation <
M ggreg Measurements
easurements + SVP

+ SVP

Feedback Route

dinsdag 2 augustus 2011



Software engineering
issues (ADVANCE)

@ Partner technology: S-NET

(coordination via SISO streams and functional boxes)

@ The position of SVP (WIP):

@ Simplify the analysis of requirements of a S-NET
network implemented using our protfocol

@ Simplify mapping by imposing constraints on
scheduling and communication patterns

@ Establish T/L/J models for both internal and
external concurrency on heferogeneous cores

.n,/[nn X o0
B l;l ?_yfgf.
7N

annns” &/é\°.

dinsdag 2 augustus 2011

W -
yuin



Now what?

Further discussion occurs now!

dinsdag 2 augustus 2011



