
An architecture and
protocol for the
management of

concurrency on DSoCs
Overview - Summer 2011

dinsdag 2 augustus 2011

Agenda

SVP & Apple-CORE

Realizations & evolution

Key concepts (selected)

Current “hot” topics

Research directions

dinsdag 2 augustus 2011

SVP & Apple-CORE
dinsdag 2 augustus 2011

Origins

1996-present: connect many D-RISC cores
together = “Microgrid”

NWO Microgrids (2005-present):
Architecture concepts, µTC and simulations

EU ÆTHER (2007-2009): Reconfigurability
and resource abstractions

dinsdag 2 augustus 2011

The original SVP
in a nutshell

Unit of concurrency: families of threads

The cluster is the processor: entire families created at once over
multiple cores

Both internal and external parallelism available in hw (ILP, SMT
and multi-core parallelism)

The “create” primitive can be used in programs to define families,
“sync” to bulk synchronize

Split-phase asynchrony assumed to be the norm for all operations

Use requires new programming model (new language, new
compilation methods)

dinsdag 2 augustus 2011

SVP functional
concurrency

Scheduling unit

Parent
thread

signals/events
create

synchronisation

synchronisation

complete

Scheduling unit

Scheduling unit

Child family - 1 threadControl flow

Concurrency & dependencies

dinsdag 2 augustus 2011

SVP replicated
concurrency

Parent
thread

Child
thread

signals/events
create

complete

Child
thread

Child
thread

Child
thread

…

Child task - a family of threads

Control flow

Concurrency

dinsdag 2 augustus 2011

SVP Pipelined concurrency

depende
nt part

depende
nt part

depende
nt part

independe
nt part

Parent
thread

signals/events
create

complete

independe
nt part

independe
nt partsynchronisatio

n
synchronisatio

n
synchronisatio

n

Child task - a family of threads

Control flow

Concurrency & dependencies

dinsdag 2 augustus 2011

Parent-child relationship in
heterogeneous tasks

create
(i=0..2)
control()

signals/events
create

complete

if i=0
create
foo()

...

...
elseif
i=2

create
goo()

...
elseif
i=1

create
bar()

...

Heterogeneous task foo/bar/goo

Control flow

Concurrency

foo bar goo

dinsdag 2 augustus 2011

Moving up

EU Apple-CORE (2008-2011):

“Can the Microgrid be programmed
efficiently?”; sets µTC as an “intermediate
language”

Goal: automatically parallelize existing
code (C, SAC) while translating to µTC

Goal: Show applicability to real-world
applications

dinsdag 2 augustus 2011

Apple-CORE strategy
Compute kernels

(performance languages)

dinsdag 2 augustus 2011

Apple-CORE strategy

Many cores

Compute kernels
(performance languages)

dinsdag 2 augustus 2011

Apple-CORE strategy

Many cores

Compute kernels
(performance languages)

Compilers, OS and runtime support
(for retargeting and resource mapping)

dinsdag 2 augustus 2011

Apple-CORE strategy

Many cores

Compute kernels
(performance languages)

Compilers, OS and runtime support
(for retargeting and resource mapping)

dinsdag 2 augustus 2011

Apple-CORE strategy

Many cores

Compute kernels
(performance languages)

Compute kernels
(retargetable concurrent SVP IR)

Compilers, OS and runtime support
(for retargeting and resource mapping)

dinsdag 2 augustus 2011

Apple-CORE strategy

Many cores

Compute kernels
(performance languages)

Compute kernels
(retargetable concurrent SVP IR)

Compilers, OS and runtime support
(for retargeting and resource mapping)

dinsdag 2 augustus 2011

Apple-CORE strategy

Many cores

Compute kernels
(performance languages)

Compute kernels
(retargetable concurrent SVP IR)

Compilers, OS and runtime support
(for retargeting and resource mapping)

dinsdag 2 augustus 2011

Apple-CORE strategy

Many cores

Compute kernels
(performance languages)

Compute kernels
(retargetable concurrent SVP IR)

Compilers, OS and runtime support
(for retargeting and resource mapping)

parallelizing
compilers

dinsdag 2 augustus 2011

Apple-CORE strategy

Many cores

Compute kernels
(performance languages)

Compute kernels
(retargetable concurrent SVP IR)

Compilers, OS and runtime support
(for retargeting and resource mapping)

parallelizing
compilers

dinsdag 2 augustus 2011

Apple-CORE strategy

Many cores

Compute kernels
(performance languages)

Compute kernels
(retargetable concurrent SVP IR)

Compilers, OS and runtime support
(for retargeting and resource mapping)

parallelizing
compilers

manual
(re)tuning

dinsdag 2 augustus 2011

Apple-CORE strategy

Current
Multi-cores Many cores

Compute kernels
(performance languages)

Compute kernels
(retargetable concurrent SVP IR)

Compilers, OS and runtime support
(for retargeting and resource mapping)

parallelizing
compilers

manual
(re)tuning

dinsdag 2 augustus 2011

Apple-CORE strategy

Current
Multi-cores Many cores

Compute kernels
(performance languages)

Compute kernels
(retargetable concurrent SVP IR)

Compilers, OS and runtime support
(for retargeting and resource mapping)

parallelizing
compilers

manual
(re)tuning

dinsdag 2 augustus 2011

Apple-CORE strategy

Current
Multi-cores

Clusters of
multi-cores Many cores

Compute kernels
(performance languages)

Compute kernels
(retargetable concurrent SVP IR)

Compilers, OS and runtime support
(for retargeting and resource mapping)

parallelizing
compilers

manual
(re)tuning

dinsdag 2 augustus 2011

Apple-CORE strategy

Current
Multi-cores

Clusters of
multi-cores Many cores

Compute kernels
(performance languages)

Compute kernels
(retargetable concurrent SVP IR)

Compilers, OS and runtime support
(for retargeting and resource mapping)

parallelizing
compilers

manual
(re)tuning

dinsdag 2 augustus 2011

Apple-CORE strategy

Current
Multi-cores

Clusters of
multi-cores Many cores ...

Compute kernels
(performance languages)

Compute kernels
(retargetable concurrent SVP IR)

Compilers, OS and runtime support
(for retargeting and resource mapping)

parallelizing
compilers

manual
(re)tuning

dinsdag 2 augustus 2011

Apple-CORE strategy

Current
Multi-cores

Clusters of
multi-cores Many cores ...

Program assemblies
(composition languages)

Compute kernels
(performance languages)

Compute kernels
(retargetable concurrent SVP IR)

Compilers, OS and runtime support
(for retargeting and resource mapping)

parallelizing
compilers

manual
(re)tuning

dinsdag 2 augustus 2011

Apple-CORE strategy

Current
Multi-cores

Clusters of
multi-cores Many cores ...

Program assemblies
(composition languages)

Compute kernels
(performance languages)

Compute kernels
(retargetable concurrent SVP IR)

Program assemblies
(SVP-aware composition languages)

Compilers, OS and runtime support
(for retargeting and resource mapping)

parallelizing
compilers

manual
(re)tuning

dinsdag 2 augustus 2011

Apple-CORE strategy

Current
Multi-cores

Clusters of
multi-cores Many cores ...

Program assemblies
(composition languages)

Compute kernels
(performance languages)

Compute kernels
(retargetable concurrent SVP IR)

Program assemblies
(SVP-aware composition languages)

Compilers, OS and runtime support
(for retargeting and resource mapping)

parallelizing
compilers

manual
(re)tuning

dinsdag 2 augustus 2011

Apple-CORE strategy

Current
Multi-cores

Clusters of
multi-cores Many cores ...

Program assemblies
(composition languages)

Compute kernels
(performance languages)

Compute kernels
(retargetable concurrent SVP IR)

Program assemblies
(SVP-aware composition languages)

Compilers, OS and runtime support
(for retargeting and resource mapping)

parallelizing
compilers

manual
(re)tuning

dinsdag 2 augustus 2011

Duality in SVP
(original view)

“SVP is dual, a combination of a programming
model (provides concepts and contracts) and
an architecture model (provides abstract
mechanisms)”

The Microgrid and µTC-ptl (higher-level
simulation) are implementations of SVP

dinsdag 2 augustus 2011

Moving up (cont.)

Cleaning up (2008-2009): Programming and
architecture models stabilized, described and
specified separately

Beefing up (2009-2010):

Compiler toolchains actually useable

OS+compiler support for resource
deadlocks, mutual exclusion, arbitrary
inter-thread communication

dinsdag 2 augustus 2011

Apple-CORE foreground
Design guidelines for

fine-grained
hardware support for
dataflow scheduling

New machine
model and

programming
strategies

Microthreaded
hardware

exemplified by

new languages
extensions:

µTC, SL

enabled by

Demo and benchmark
applications

executes on

used by

Microgrid
System services

supported by

Compilers
and code generators

for fine-grained
dataflow ISA

translated by

Fine grained
measurement
infrastructure

evaluated by

translated by

Cycle-accurate
machine simulation

of a Microgrid

generate code for

emulates

drives

monitors

existing
languages:

C, SAC
 & new dataflow

execution
stragegies

used by

enabled by

Language run-time
systems

for massive concurrency

interact with

drives

dinsdag 2 augustus 2011

Apple-CORE results

Concurrency within cores provide good latency
tolerance - assuming enough threads

Distribution of work across cores is technically
easy and can be achieved at extremely low
latencies (few cycles)

- the difficult problem is placement decision

We have designed a full chip architecture
= custom in-order microthreaded RISC cores on a
custom NoC with custom memory network

dinsdag 2 augustus 2011

Pause and reflection
dinsdag 2 augustus 2011

Realizations

There is more to a usable system than a processor (or network
thereof) and code generator

Embedding dataflow + microthreading into a core is a disruptive
architectural change

- too easy to under-estimate compilation issues
(µtc was a management failure, had to re-design mid-project)

The interface between hardware and software is not only a
matter of language, OS syscalls and standard user library

- too easy to under-estimate integration issues
(an SVP-only system prevented reuse of benchmark code)

dinsdag 2 augustus 2011

Realization 1

Single
processor

Coarse time sharing
software scheduler

Multiple
sequential
applications

“Today”

Multi-
granularity

concurrent code

“Tomorrow”

Many
cores

Hardware
concurrency &

scheduling

Future architectures

Extend
languages

Shift
responsibility

dinsdag 2 augustus 2011

Realization 1

Multiple
cores

Time and space
sharing schedulers

Multi-tasked
applications

Today:

Device drivers

Memory
hierarchies

I/O
devices

Language inter-
operability

Portability,
compatibility

Standard system
services

Expectations Standard practices

dinsdag 2 augustus 2011

Realization 2

Software
guyHardware

guy

System
documentation

Driver
interfaces

Language
libraries

Device
Drivers

Insn matching +
Regalloc +

Static scheduling
Assembler

Language
front-endsLinker

Introspection
interfaces

Machine
access

interfaces

Resource
managers

Language
and library

documentation

DebuggersTool chain
packaging

Shells and all other system and user
tools and utilities

dinsdag 2 augustus 2011

Evidence from the A-C
experience

��������� ����	
����

��������	�
����� ��
� �����

��� ��� �����
�����
����� �� �� ����
��������	���� � �� ����

�����
����� �� �� ����
�������
� � �� �
��
������ � � ����

������������	��
 �
 ��
�
�������� � � ���

������	������� � � ���
���
����
� � ��
��

������ ���������

������	��

!�"����	�#$���%�����

&��	��'�$
�(�

��������	�
����� ������	�� �����
����� ��������	����

�����
����� �������
� ������ ������������	��

�������� ������	������� ���
����
�

dinsdag 2 augustus 2011

Realization 2

Linguae francae

C/POSIX
(not your textbook C: inline assembly, compiler extensions)

Java/JVM

CIL/CLR (.NET)

Everything else either uses or implements these

Pick your lingua franca = pick your community

dinsdag 2 augustus 2011

How to pitch novel
architectures?

(Assuming the hardware is ready for use)

Implement a compiler for a restricted dialect of C with minimal
library support

– tractable, but expect: “meh... what can you do with it?”
- the bane of architecture research: underestimate sw integration

Implement a complete GCC target then port an existing operating
system with bootloader, hw drivers, file system, shell and utilities

- untractable, unless new hw ≈ old hw (to maximize software reuse)

What else?

dinsdag 2 augustus 2011

Heterogeneous systems

Run the linguae
francae on an
existing design

Embed the existing
design as component
of a D-SoC

Define standard
protocols for control
and communication
between cores

Legacy
core

New
arch 2

New
arch 3

New
arch 1

I/O

dinsdag 2 augustus 2011

Evolution / transition

Shift from core architecture design
to system design and integration

Innovate with protocols and language integration
instead of machine primitives and programming
models
(hint: tcp/ip too heavy for low-latency on-chip interactions)

New pitch:

“SVP is a protocol and architecture for the
management of execution units on a chip”

dinsdag 2 augustus 2011

Proposed base semantics
Dataflow synchronization cells to support split-phase asynchrony
between threads (int. concurrency) and components (ext. concurrency)

NoC messages between and within cores with fixed semantics:

allocate/release to manage execution resources

create to trigger execution of a family

sync to bulk-synchronize a family

rput/rget to access synchronizers remotely

Multiple ISA integration strategies: adaptation, extension, embedding

Responsibility for consistent use pushed up to the software stack, not
constrained by model any more

dinsdag 2 augustus 2011

Key concepts (selected)
dinsdag 2 augustus 2011

Granularity
Code portability = distributing different computation grain
sizes
execution efficiency proportional to grain size, inversely to
cost of managing concurrency
Also have to consider the communication cost of distribution

sequential
code

maximally
parallel
code

target
granularity

add concurrency

sequentialise

difficult and target specific

relatively easy
(assuming specializable language!)

dinsdag 2 augustus 2011

Granularity
Code portability = distributing different computation grain
sizes
execution efficiency proportional to grain size, inversely to
cost of managing concurrency
Also have to consider the communication cost of distribution

sequential
code

maximally
parallel
code

target
granularity

add concurrency

sequentialise

target
granularitydifficult and target specific

relatively easy
(assuming specializable language!)

dinsdag 2 augustus 2011

Granularity
Code portability = distributing different computation grain
sizes
execution efficiency proportional to grain size, inversely to
cost of managing concurrency
Also have to consider the communication cost of distribution

sequential
code

maximally
parallel
code

target
granularity

add concurrency

sequentialise

target
granularitydifficult and target specific

relatively easy
(assuming specializable language!)

This is easier than
targeting a given

granularity

dinsdag 2 augustus 2011

Mutual exclusion
Mutual exclusion is required to support controlled
non-determinism

DSoC memory is asynchronous, only weakly
consistent might not be usable to implement
atomics
the SVP way is to define a “mutex place” that
serialises all requests to create tasks at that
place (Dijkstra’s secretaries) – same protocol

These can be used for multiple synchronization goals,
e.g. I/O, semaphores, resource allocation, etc.
As such they are in the domain of systems
programming i.e. the concurrency engineer

dinsdag 2 augustus 2011

Current “hot” topics
dinsdag 2 augustus 2011

Inter-thread
communication

Communication channels beween threads:

OK for register-sized channels: use i-
structure hardware registers

Not OK for larger items: they must fit
through memory ... which is asynchronous

Which memory model? How to use it in
programs? Non-shared address spaces?

dinsdag 2 augustus 2011

Inter-thread
communication

Some directions:

Programming model: make all
communication visible to the compiler

Implementation using shared memory:
synchronize memory updates via
registers

Distributed systems: explicit messaging

dinsdag 2 augustus 2011

Resource
deadlocks

Shortage of memory: not our problem (yet)

Shortage of synchronizers: spread threads
on multiple cores - OK

Shortage of thread entries: create less
threads per core - OK

Shortage of family entries: delegate ... where
to? or sequentialize ... how?

dinsdag 2 augustus 2011

Resource
deadlocks

Some directions:

Rebalance concurrency trees early (by rewriting
code for family creates)

Delegation (to other places on the SoC)

Automatic sequentialization, requires both:
- feedback from hardware about resource
availability

- sequentializability of concurrency pattterns in
languages

dinsdag 2 augustus 2011

Research directions
dinsdag 2 augustus 2011

Follow-ups
to Apple-CORE

How to integrate the protocol in existing and future core
architectures / ISAs

- in a way that minimize disruption in software stacks?

Is there a case for multiple ISAs in the same chip

- and how to manage multiple codes in the same program?

How to automate placement over multiple cores

- with a placement latency comparable to (or lower than)
the operation latency?

dinsdag 2 augustus 2011

Software engineering
ADVANCE

“What information should be available in
programs, and how to represent resources, to
allow efficient mapping and scheduling to
computing resources?”

dinsdag 2 augustus 2011

Software engineering
ADVANCE

Program:

Capture extra-functional requirements in
programs

Virtualize hardware and modelize
resources in heterogeneous environments

Design mapping and feedback mechanisms

dinsdag 2 augustus 2011

ADVANCE at a glance

! !

dinsdag 2 augustus 2011

ADVANCE interactions

!"#$%

&'()*$

!"#$%

+',-./$)

&%0%.1%.*0/

230/41.1

50--.36

50)7'8

5'9$/

:$);'),03*$

266)$60%.'3

+2<

=>?$*%

@A&!:

@A+2<

B0)9C0)$

:/0%;'),

D430,.*

290-%0%.'3

5$01()$,$3%1

@A&!:

"(3%.,$

5$01()$,$3%

266)$60%$9

5$01()$,$3%1

@A&!:

=>?$*%

@A&!:

!""#$%&'()*+,"

-*./01%,0*2()*+,"

32%14505

)*+,"

dinsdag 2 augustus 2011

Software engineering
issues (ADVANCE)

Partner technology: S-NET
(coordination via SISO streams and functional boxes)

The position of SVP (WIP):

Simplify the analysis of requirements of a S-NET
network implemented using our protocol

Simplify mapping by imposing constraints on
scheduling and communication patterns

Establish T/L/J models for both internal and
external concurrency on heterogeneous cores

dinsdag 2 augustus 2011

Now what?
Further discussion occurs now!

dinsdag 2 augustus 2011

