
Thread-local storage:
The bane of 
shared memory many-core 
architectures
kena - 20110928



What is a shared 
memory many-core?

“Many” processing units 
(cores, pipelines, FUs)

All processing units share
a single memory system 

Memory = storage with 
load/store interface + 
addresses

Memory system = network 
of caches with a single 
physical backing storeCHIP - many cores, lots of caches

Lots of RAM

One
physical
address space



Latency issues
DENSER CHIP

= MORE CLOCK CYCLES 
TO REACH DATA 

(AT CONSTANT FREQUENCY)

MORE CLOCK CYCLES
TO REACH DATA

= MORE THREADS PER 
CORE NECESSARY TO 

TOLERATE THE LATENCY

DATA: ARGAWAL&AL 2000, JESSHOPE&AL 2010



Threads vs tasks vs 
workers vs processes
“Thread” applies to: 

“hardware threads” when each hw thread has a sw 
scheduler to time-share processes

“worker threads” when each worker runs computational 
tasks one after each other without interleaving

“microthreads” when each hw thread runs exactly one 
task (and can be recycled)

NOT the time slice in time-sharing, NOT the task in 
worker-based scheduling



Threads vs tasks vs 
workers vs processes
What kind of “thread” are we talking about?

processing unit that computes one or more 
functions sequentially

initial state: which function(s), which input

private state: one or more activation records 

Threads are just sets of activation records 
defined simultaneously - TLS ≈ activation records



What is TLS?
WHAT: “private to each thread” 
= a priori knowledge that the locations in memory are not shared 

WHY: necessary for Turing-completeness

activation records = return addresses + local variables

The more TLS there is, the more Turing-complete the threads are

Current GPU “threads” do not have a large TLS and thus are mostly 
limited to primitive-recursive functions, ie not much 

Applied halting problem: if the computation contains data-dependent 
recursions (all non-primitive-recursive functions do), it is not possible to 
determine before a thread start how much TLS it will need to 
complete



TLS with shared 
memory: address spaces
Only two situations really:

Single address space (no translation) 
⇒ partition the address space

Multiple virtual address spaces with translation
⇒ partition the physical address space 

to construct the translation entries

Dynamic address space partitioning is the issue

Using “malloc” to allocate ≈ also dynamic partitioning 



Why global static 
partitioning won’t work

140 GB
4,3 PB

4,1 MB
130 MB 

THE CELLS MUST 
BE ON CHIP TO 

ENSURE 
LOCALITY



Diversity of sizes

DATA: GRUNWALD 1994



Limits of pre-allocation
Pre-allocation sometimes 
possible, using compiler-
known frame sizes and 
profile data

Actual required size usually 
much lower than 
conservative static 
estimate

⇒ dynamic re-sizing 

required during execution

DATA: GRUNWALD 1994



Shared memory 
management
Wilson 1995: Memory management is where the rubber meets the 
road--if we do the wrong thing at any level, the results will not be good. 
And if we don't make the levels work well together, we are in serious trouble. 
In many areas of computer science, problems can be decomposed into 
levels of abstraction, and different problems addressed at each level, in 
nearly complete isolation. Memory management requires this kind of 
thinking, but that is not enough--it also requires the ability to reason 
about phenomena that span multiple levels.

(P. Wilson, M. Johnstone, M. Neely, and D. Boles. Dynamic storage 
allocation: A survey and critical review. In Memory Management, LNCS 
volume 986, pages 1–116.) 



Scalable memory 
management
Berger & al, 2000: Hoard “state of the art scaling”

Uses one local heap per per sequential unit of 
execution (processor, worker, etc. ie our “threads”)

A(t) = O(U(t) + P)

⇒ overall address space requirement super-linear in P

Anything less incurs contention and kills latency tolerance

Same for ptmalloc, mtmalloc, dlmalloc and others

(A = TOTAL FOOTPRINT, U = ACTUALLY USED, T = TIME)



Reductio ad absurdum
Locality and caches only reduce latency of access, not latency of setup - the 
real problem is efficient dynamic partitioning of a single physical storage into 
TLS area

Any solution with a single physical address space requires partitioning of 
large address spaces chunks to clusters and segregate TLS management, ie 
hierarchical TLS management

BUT: 

The higher in the hierarchy, the more difficult it becomes to grow or shrink 
the TLS address space reserved at that level

At the highest levels, TLS addresses are mostly statically defined as a 
function of the average activation record size and the number of records

We know that does not scale as the number of cores increases



Summary / conclusions
Many cores 
⇒ many threads required to tolerate latencies

1 physical address space + many threads 
⇒ hierarchical TLS management 

⇒ mostly static partitioning at the highest levels

static partitioning + many threads 
⇒ impossible to fit on chip

(I so hope I got this wrong... Please scrutinize!)

Alternative: registers/scratchpads = separate, local address spaces



Possible chip structure
Use increasing transistor counts for 
main RAM, not cores

Keep cores close to RAM - on the 
same chip

Different physical ASs for different 
core clusters (“lots ‘o scratchpad”)

Small number of Turing-complete 
cores compared to accelerator cores 
at a single point in time 

Open questions: 

ratio RAM / cores?

ratio simple / complete cores?

Lots of RAM
Tens of 
Turing-

complete 
cores

Hundreds of "simple" cores / pipelines / FUs which can only 
function as accelerators

I/O to permanent backing store (disks, flash)

Lots of RAM
Tens of 
Turing-

complete 
cores


