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Hidden costs in 
Processor innovation
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Funding priorities in 
architecture research

• Innovation happens “on the chip”
• Requires focussed effort to design and simulate 

interactions between many cores and caches
• Funding difficult to obtain for “around the chip” efforts

• “Features” required by legacy OSs  distract from this 
focus, especially if mandated on every core; e.g.:

• System description tables in ROM
• Backward-compatible PICs and IPIs
• Shared I/O and memory address space
• Standard traps (FPU exceptions, syscalls, debugging)
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Reusing software stacks with 
newly designed Many-P-SoCs

• Uniprocessor/SMP software stacks 

• control flows back and forth between “system” and “application” 
within a single instruction stream (“syscalls”)

• require all system services on all cores

• Distributed/cluster stacks

• dependent on full network stacks 
between processor+RAM nodes

• large latency and buffering overheads, unsuitable for low-latency 
on chip communication between cores 

• Experimental many-core OSs (eg Barrelfish, fos, ...)

• research projects on their own, may not be willing to divert effort 
away from their own grant focus

• Still little compatibility with existing benchmark workloads
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Known strategies

• Design incrementally to keep the Uni/SMP abstractions
• i.e. new features but (mostly) same semantics
• “more of the same” - might get stuck in local minima

• Advertise and design the new technology as “accelerator” 
• i.e. a form of extension device, eg. GPGPUs
• keeps the innovation as a “side-kick” of legacy systems

• Extend the budget; co-design the entire software stack
• risky and/or too long to market except for embedded

• Architecture research needs radical new solutions, now
• we must lower the cost to entry to innovation
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Example fundamental 
innovations

• Processor design:
• replace interrupts by active messages
• replace registers by dataflow synchronizers
• allow programs to choose the number of registers in the 

ISA at run-time
• Memory network design:

• replace cache coherency by explicit bulk consistency 
• share the address translation between multiple cores

• These are merely examples, yet all have been explored in 
Apple-CORE and its Microgrid design.
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Our use case
Microgrids of DRISC cores
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Many “new” properties, little “back” compat.
... can’t reuse existing software stacks as-is

Should we abandon this direction 
just because the cost to port the 
entire software stack is huge?
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Heterogeneous 
integration…

• Strategy to:
• support evaluation of new systems
• keep focus on architecture research
• allow freedom to “radically” innovate

• Key idea: a many-core chip is a distributed system; use 
some nodes (cores) as “service processors” for legacy 
tasks, in particular console I/O, file access and/or job 
input

• Automatically redirect API calls through the simulated 
NoC or host/fabric interface in library wrappers

• Concept common in HPC, e.g. Cray XMT
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…to simplify simulation

• Different components can be simulated with different 
levels of accuracy

• In particular simulation inaccuracy in seldom used 
“service components” may be acceptable

• Integration in simulators becomes cheap because 
service components can be functionally emulated

• Can increase accuracy by either:

• increasing accuracy of legacy component (short term)

• incrementally migrating system services from legacy 
component to new components (long term)
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Example: UTLEON3
Microthreads on FPGA

F P G A   C I R C U I T   B O A R D

F P G A   C H I P

Microthreaded 
processor

(UTLEON3)

DRAM 
interface

SVGA 
interface

UART 
interface

DRAM chips DAC + CRT 
output interface

UART 
controller

AMBA AHB bus

CRT RS 232

LCD buffer

On-board LCD

ROMLegacy RISC 
processor
(LEON3)

Research 
focus

Entire system required 
for validation/evaluation

Operating system
can run here

10zaterdag 20 oktober 2012



Design points
with software simulators

E M U L A T E D
P L A T F O R M

Many-core 
microthreaded

chip

DRAM

DDR3 
channel(s)

MMIO bridge
Legacy

processor
(emulated)

System 
bus

Virtual I/O 
devices

E M U L A T E D
P L A T F O R M

Many-core 
microthreaded

chip

DRAM

DDR3 
channel(s)

MMIO bridge Syscall
emulation

System 
bus

Legacy
OS

Where are service cores simulated?

within the detailed 
simulation framework

in a higher-level
environment

or natively on the
simulation host

11zaterdag 20 oktober 2012



Design points
with software simulators

E M U L A T E D
P L A T F O R M

Many-core 
microthreaded

chip

DRAM

DDR3 
channel(s)

Legacy
processor
(emulated)

Virtual I/O 
devices

System
network

E M U L A T E D
P L A T F O R M

Many-core 
microthreaded

chip

DRAM

DDR3 
channel(s)

MMIO bridge
Legacy

processor
(emulated)

System 
bus

Virtual I/O 
devices

Where is the connection point?

Common NoC
for memory and I/O

Separate NoC
for memory and I/O

12zaterdag 20 oktober 2012



Resulting distribution 
of engineering efforts
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Can reuse existing
OS components on
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Take away & 
future work

• Architecture research requires realistic full-
system simulations, but full systems are 
expensive to reproduce;
heterogeneous integration reduces this cost

• Heterogeneous integration combines 
naturally with heterogeneous simulation 
(e.g. FAST, MICRO’07)

• Various integration strategies allow to control 
the simulation accuracy of delegated services
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Thank you!
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