
Heterogeneous
integration

to simplify many-core
architecture simulations

Raphael ‘kena’ Poss
University of Amsterdam

RAPIDO - HiPEAC 2012, Paris

1zaterdag 20 oktober 2012

Hidden costs in
Processor innovation

ValidationDesign Evaluation Production

Simulation

Port/adapt
run-time system services

Port/adapt
software

workloads

Implement
simulation tools

(budgeted)

Compare results with
reference implementation on

previous architecture
designs

(budgeted)

“engineering” - typically outside of research budget

Port/adapt
compilers

(budgeted)

Assumption that existing
codes can be “ported” with

minimal work

What to do when a new
design makes porting
fundamentally difficult?

2zaterdag 20 oktober 2012

Funding priorities in
architecture research

• Innovation happens “on the chip”
• Requires focussed effort to design and simulate

interactions between many cores and caches
• Funding difficult to obtain for “around the chip” efforts

• “Features” required by legacy OSs distract from this
focus, especially if mandated on every core; e.g.:

• System description tables in ROM
• Backward-compatible PICs and IPIs
• Shared I/O and memory address space
• Standard traps (FPU exceptions, syscalls, debugging)

3zaterdag 20 oktober 2012

Reusing software stacks with
newly designed Many-P-SoCs

• Uniprocessor/SMP software stacks

• control flows back and forth between “system” and “application”
within a single instruction stream (“syscalls”)

• require all system services on all cores

• Distributed/cluster stacks

• dependent on full network stacks
between processor+RAM nodes

• large latency and buffering overheads, unsuitable for low-latency
on chip communication between cores

• Experimental many-core OSs (eg Barrelfish, fos, ...)

• research projects on their own, may not be willing to divert effort
away from their own grant focus

• Still little compatibility with existing benchmark workloads

4zaterdag 20 oktober 2012

Known strategies

• Design incrementally to keep the Uni/SMP abstractions
• i.e. new features but (mostly) same semantics
• “more of the same” - might get stuck in local minima

• Advertise and design the new technology as “accelerator”
• i.e. a form of extension device, eg. GPGPUs
• keeps the innovation as a “side-kick” of legacy systems

• Extend the budget; co-design the entire software stack
• risky and/or too long to market except for embedded

• Architecture research needs radical new solutions, now
• we must lower the cost to entry to innovation

5zaterdag 20 oktober 2012

Example fundamental
innovations

• Processor design:
• replace interrupts by active messages
• replace registers by dataflow synchronizers
• allow programs to choose the number of registers in the

ISA at run-time
• Memory network design:

• replace cache coherency by explicit bulk consistency
• share the address translation between multiple cores

• These are merely examples, yet all have been explored in
Apple-CORE and its Microgrid design.

6zaterdag 20 oktober 2012

Our use case
Microgrids of DRISC cores

MEMORY

MEMORY

ACTIVE
MESSAGES

DECODE & REGADDR

RF

ALU

LSU

FETCH & SWITCH

L1D & MCU

ALU
(async)

L1I

WB

TMU &
SCHEDULER

READ & ISSUE

TT & FT NCU

DATAFLOW
REGISTERS

SUSPEND ON
EMPTY OPERAND

ASYNC WAKEUP
ON COMPLETION

SWITCH EARLY
ON POTENTIAL
INPUT MISSES

SET TARGET "WAITING"
IF LONG LATENCY OP

TMU CONTROL FROM
ISA INSTRUCTIONS

TMU
CONTROL

FROM
OTHER
CORES

+
INTER-
CORE

THREAD
MGT.

PROTOCOL

10 9 6 5

11 8 7 4

12 13 2 3

15 14 1 0

26 25 22 21

27 24 23 20

28 29 18 19

31 30 17 16

L2 L2

L2L2

DIRECTORY

L2 L2

L2L2

R R R R

R R R R R

R

RRRRR

DIFFUSE MEMORY NETWORK
CACHE LINES KEPT AT PLACE OF LAST USE

NARROW PACKET-SWITCHED MESH
FOR CROSS-CHIP WORK DELEGATION

POINT-TO-POINT LINEAR NETWORK
FOR BULK CREATION AND SYNCHRONIZATION

Root directory

DDR Channel
Root directory

DDR Channel

Root directory

DDR Channel
Root directory

DDR Channel

Off-chip
I/O network

Off-chip
I/O network

Many “new” properties, little “back” compat.
... can’t reuse existing software stacks as-is

Should we abandon this direction
just because the cost to port the
entire software stack is huge?

7zaterdag 20 oktober 2012

Heterogeneous
integration…

• Strategy to:
• support evaluation of new systems
• keep focus on architecture research
• allow freedom to “radically” innovate

• Key idea: a many-core chip is a distributed system; use
some nodes (cores) as “service processors” for legacy
tasks, in particular console I/O, file access and/or job
input

• Automatically redirect API calls through the simulated
NoC or host/fabric interface in library wrappers

• Concept common in HPC, e.g. Cray XMT

8zaterdag 20 oktober 2012

…to simplify simulation

• Different components can be simulated with different
levels of accuracy

• In particular simulation inaccuracy in seldom used
“service components” may be acceptable

• Integration in simulators becomes cheap because
service components can be functionally emulated

• Can increase accuracy by either:

• increasing accuracy of legacy component (short term)

• incrementally migrating system services from legacy
component to new components (long term)

9zaterdag 20 oktober 2012

Example: UTLEON3
Microthreads on FPGA

F P G A C I R C U I T B O A R D

F P G A C H I P

Microthreaded
processor

(UTLEON3)

DRAM
interface

SVGA
interface

UART
interface

DRAM chips DAC + CRT
output interface

UART
controller

AMBA AHB bus

CRT RS 232

LCD buffer

On-board LCD

ROMLegacy RISC
processor
(LEON3)

Research
focus

Entire system required
for validation/evaluation

Operating system
can run here

10zaterdag 20 oktober 2012

Design points
with software simulators

E M U L A T E D
P L A T F O R M

Many-core
microthreaded

chip

DRAM

DDR3
channel(s)

MMIO bridge
Legacy

processor
(emulated)

System
bus

Virtual I/O
devices

E M U L A T E D
P L A T F O R M

Many-core
microthreaded

chip

DRAM

DDR3
channel(s)

MMIO bridge Syscall
emulation

System
bus

Legacy
OS

Where are service cores simulated?

within the detailed
simulation framework

in a higher-level
environment

or natively on the
simulation host

11zaterdag 20 oktober 2012

Design points
with software simulators

E M U L A T E D
P L A T F O R M

Many-core
microthreaded

chip

DRAM

DDR3
channel(s)

Legacy
processor
(emulated)

Virtual I/O
devices

System
network

E M U L A T E D
P L A T F O R M

Many-core
microthreaded

chip

DRAM

DDR3
channel(s)

MMIO bridge
Legacy

processor
(emulated)

System
bus

Virtual I/O
devices

Where is the connection point?

Common NoC
for memory and I/O

Separate NoC
for memory and I/O

12zaterdag 20 oktober 2012

Resulting distribution
of engineering efforts

32%

10%
2% 32%

12%

12%

Implementation of simulation components
Low-level/RTL hardware design
Low-level testing and debugging
Porting system services
Compiler back-end - machine code generation
Higher-level evaluation (compilers & applications)

2 simulators: FPGA + software

D-RISC core
L1 split-phase cache
COMA network

Focus on exploitation
of fine-grained, massive concurrency

Can reuse existing
OS components on
legacy core

13zaterdag 20 oktober 2012

Take away &
future work

• Architecture research requires realistic full-
system simulations, but full systems are
expensive to reproduce;
heterogeneous integration reduces this cost

• Heterogeneous integration combines
naturally with heterogeneous simulation
(e.g. FAST, MICRO’07)

• Various integration strategies allow to control
the simulation accuracy of delegated services

14zaterdag 20 oktober 2012

Thank you!

15zaterdag 20 oktober 2012

