
Science vs. Innovation
in computer architecture research

Raphael ‘kena’ Poss
University of Amsterdam, the Netherlands

IvI Colloquium
May 31st, 2012

Recent thesis
“On the

realizability of
hardware

microthreading”

Current on-chip parallelism
is based on legacy

• Historical focus on single-thread performance
(developments in general-purpose processors: registers, branch prediction,
prefetching, out-of-order execution, superscalar issue, trace caches, etc.)

• Legacy heavily biased towards single threads:
• Symptom: interrupts are the only way to signal

asynchronous external events
• Retro-fitting hardware multithreading is difficult

because of the sequential core’s complexity

• What if...
we redesigned general-purpose processors,
assuming concurrency is the norm in software?

Microgrids
of D-RISC cores

• D-RISC cores:
hardware multithreading +
dynamic dataflow scheduling

• fine-grained threads: 0-cycle
thread switching, <2 cycles
creation overhead

• ISA instructions for thread
management

• dedicated hardware processes
for bulk creation and
synchronization

• No preemption/interrupts;
events create new threads

MEMORY

MEMORY

ACTIVE
MESSAGES

DECODE & REGADDR

RF

ALU

LSU

FETCH & SWITCH

L1D & MCU

ALU
(async)

L1I

WB

TMU &
SCHEDULER

READ & ISSUE

TT & FT NCU

In-order, single-issue RISC: small, cheaper, faster/watt

Example 128-core
Microgrid

• 32000+ hw threads

• 5MB distributed cache

• shared MMU
= single virtual
address space,
protection using
capabilities

• Weak cache coherency

• no support for global
memory atomics –
instead
synchronization using
remote register writes

Root directory

DDR Channel
Root directory

DDR Channel

Root directory

DDR Channel
Root directory

DDR Channel

Off-chip
I/O network

Off-chip
I/O network

Area estimates with CACTI: 100mm2 @ 35nm

Approximate size of one Nehalem (i7) core
for comparison

A perspective shift

CORE I7

Function call

with 4 registers spilled

30-100 cycles

Predictable loop

requires branch predictor
+ cache prefetching

to maximize utilization

1+ cycles per iteration
overhead

D-RISC
WITH TMU

IN HARDWARE

Bulk thread creation

of 1 thread,
31 “fresh” registers

~15 cycles
(7c sync, ~8c async)

Thread family

1 thread / “iteration”
reuses common TMU

and pipeline
no BP nor prefetch needed

no per-iteration overhead

Results, what’s next?

✓ built enough infrastructure to fit the F/OSS landscape
– yet can’t reuse most existing OS code: no interrupts, no traps

✓ as planned, higher performance per area and per watt
– via hand-coded benchmarks: granularity in SPEC is too coarse

• Follow-up research areas:

• Internal issues: memory consistency, scalable cache
protocols, ISA semantics, etc.

• External issues from outside architecture: how to
virtualize? how to map tasks over so many
“workers”? how to port existing OS code?

• Fundamental issues: concurrent complexity theory?

Preliminary outcome

• We can make smarter processors but
they look & feel different to system
developers.
• Analogy: a new hexagonal Lego unit

• To gain traction: demonstrate the
benefits in applied problems

• But this seems hard to all actors in our
field, why is that?

Generative
computer

architecture

“Ideas vs. realization”
- not!

• Common fallacy:
“coming up with an idea ≠ implementing this idea”
“Ideas are free, but execution is priceless” – Scott Ginsberg

• In computer architecture:
• some people specify components

• often using smaller components as sub-parts
• other people integrate designs into systems
• other people deploy/validate systems to applications

• Computer architecture is an ecosystem...
different people, different responsibilities

• ... in symbiosis with software ecosystems

“Ideas vs. realization”
- not!

• Common fallacy:
“coming up with an idea ≠ implementing this idea”
“Ideas are free, but execution is priceless” – Scott Ginsberg

• In computer architecture:
• some people specify components

• often using smaller components as sub-parts
• other people integrate designs into systems
• other people deploy/validate systems to applications

• Computer architecture is an ecosystem...
different people, different responsibilities

• ... in symbiosis with software ecosystems

by the way we do that at CSA!

Computer engineering
at a glance

SYSTEMS
ARCHITECTURESOFTWARE ENGINEERING

ELECTRONIC ENGINEERING COMPUTER ARCHITECTURE

metal
oxides

semi-
conductors

CMOS

Processors

Storage

metals Links

Embedded
systems

NMOS
magnetic
substrates

Backplanes

refined matter

petro-chemicals
packaging

Functional
Units

Memories

Caches

electronics logic circuits components platforms

layers of composition and complexity: from parts to whole

Software
programs

Computing
platforms

Algorithms

Frameworks

Operating
software

systems

Networks

Computational
clusters

Personal
computers

Game
consoles

GaA/Si/SiGe/SiC
crystals

Computer engineering
at a glance

SYSTEMS
ARCHITECTURESOFTWARE ENGINEERING

ELECTRONIC ENGINEERING COMPUTER ARCHITECTURE

metal
oxides

semi-
conductors

CMOS

Processors

Storage

metals Links

Embedded
systems

NMOS
magnetic
substrates

Backplanes

refined matter

petro-chemicals
packaging

Functional
Units

Memories

Caches

electronics logic circuits components platforms

layers of composition and complexity: from parts to whole

Software
programs

Computing
platforms

Algorithms

Frameworks

Operating
software

systems

Networks

Computational
clusters

Personal
computers

Game
consoles

GaA/Si/SiGe/SiC
crystals

we are here
with Microgrids

Invention vs. application

• Two major types of personality profiles

• “Inventive” types

• creative, restless
• “if I know how it works, it’s not interesting any more”

• reward system based on abstraction & variety

• “Applicative” types

• dedicated, focused

• “will put hours in it until it works and looks nice”
• reward system based on finished products & fame

Optimization vs.
generation

• Two major types of research in computer architecture
• Optimization – most common

eg. pipelines, new silicon technology, branch predictors, etc.

• Mostly uses the scientific method
observe-hypothesise-predict-test-analyze

• Incremental
new components comparable to previous generations

• “Generation” (for lack of a better word) – less common
eg. processor registers, RISC, VLIW, hardware multithreading, GPU accelerators

• Profundly non-scientific: irrational human creativity

• Disruptive: not comparable, creates new areas for further work
• Test to distinguish: can we exploit the outcome using the same software?

• Generation: “no”, large software investment necessary to demonstrate

A model for the activities
of computer science

A model for the activities
of computer science

phenomena analysis &
modeling knowledge

abstract
derivation abstract ideas

A model for the activities
of computer science

phenomena analysis &
modeling knowledge

abstract
derivation abstract ideas

refined matter foundational
engineering tools, machines

inspiration

A model for the activities
of computer science

phenomena analysis &
modeling knowledge

abstract
derivation abstract ideas

refined matter foundational
engineering tools, machines

inspiration

applied
engineering

applied systemshuman concerns

A model for the activities
of computer science

phenomena analysis &
modeling knowledge

abstract
derivation abstract ideas

refined matter foundational
engineering tools, machines

inspiration

applied
engineering

applied systemshuman concerns

A model for the activities
of computer science

phenomena analysis &
modeling knowledge

abstract
derivation abstract ideas

refined matter foundational
engineering tools, machines

inspiration

applied
engineering

applied systemshuman concerns

Traditional “sciences”
(incl. TCS)

Computer engineering
“Innovation”

A model for the activities
of computer science

phenomena analysis &
modeling knowledge

abstract
derivation abstract ideas

refined matter foundational
engineering tools, machines

inspiration

applied
engineering

applied systemshuman concerns

Traditional “sciences”
(incl. TCS)

Computer engineering
“Innovation”

most of computer architecture
happens here

A model for the activities
of computer science

phenomena analysis &
modeling knowledge

abstract
derivation abstract ideas

refined matter foundational
engineering tools, machines

inspiration

applied
engineering

applied systemshuman concerns

A model for the activities
of computer science

phenomena analysis &
modeling knowledge

abstract
derivation abstract ideas

refined matter foundational
engineering tools, machines

inspiration

applied
engineering

applied systemshuman concerns

optimization

A model for the activities
of computer science

phenomena analysis &
modeling knowledge

abstract
derivation abstract ideas

refined matter foundational
engineering tools, machines

inspiration

applied
engineering

applied systemshuman concerns

optimization generation

A model for the activities
of computer science

phenomena analysis &
modeling knowledge

abstract
derivation abstract ideas

refined matter foundational
engineering tools, machines

inspiration

applied
engineering

applied systemshuman concerns

optimization generation

missing link: application

Missing link: from
generation to acceptance

• Main issue here becomes engineering:
• meticulousness in the realization

(eg. automated testing, documentation)

• scrupulousness in recognizing and following
audiences (customer) expectations
(eg. check corner cases, provide autonomous demos, provide relevant tutorials)

• thus awareness of how technology fits into the larger
picture of a market

• Best done by “applicative” people
• Activity traditionally under responsibility of “industry”:

private enterprises, high risk but potentially high ROI.

Outcome so far

• “Computer science”
= computer engineering / “innovation” (do)
inspired/sustained by theoretical computer science (think)

• “Innovation”
= foundational engineering (invent)
+ applicative engineering (make)

• Optimization vs. generative CS
are different paths through these activities

• Followed by different groups of people
(different distributions of personality profiles)

• In “science organizations” we have an excess of thinkers and
inventors, lack of applicative engineers – short on “make”

“Science vs. Innovation”
a.k.a.

Politics in computer
engineering

Landscape 2005-2015

• All fields of IT rely on computer engineering
• And so does pretty much everyone’s life at least in

the Western world

• Computers are invented and made by
humans, not nature or other computers

• There are currently HUGE challenges in
computer architecture – likely not solvable
with optimization only

• Who will solve these problems?
How can we facilitate generative CS?

Computer architecture
enablers

• Things innovators must do to succeed in computer architecture:
• a priori analysis & modeling of system behavior
• develop complex & computationally expensive experiments

towards validation of new/optimized computers
• specify components, implement simulators
• for generative CS, implement new software infrastructure

(libraries, operating systems, compilers)

• rewrite and re-run programs written by other people and see
how to make them run “better”

• In other words the people in charge must be both
• competent scientists
• and seasoned system and software engineers

The challenge of
foundational CS

• Core issue, not specific to comp. arch.: creation is non-scientific

• not incremental, not falsifiable, not verifiable

• cannot compare at a small scale with previous generations
(cf earlier Lego brick analogy)

• need to build larger systems using the invention
to demonstrate/see “what it’s good for”

• success is measurable only in hindsight – sometimes years afterwards
• cannot “measure” progress incrementally – huge management risk

• Therefore, no short-term incentive to promote and facilitate gen. CS
• Unclear how to train and reward the right personality & skills in

people

Issues of
morals and politics

• The elephant in the room:
Why not delegate innovation entirely to industry?
Industry is good at applied CS, why not foundational CS too?

• Morals: generative CS is increasingly captured behind
corporate closed doors (Samsung, Apple, ARM, Intel, ...)

• our descendants will ask what did we do to foster
openness, transparency & democracy?

• Politics: what should be the role of research organizations?
Is it only to produce abstract models models and human-tools for corporations?

• There is more money to be gotten for new technology
than for academic papers
– we may want a slice of that!

Partnerships & education
(conclusion)

• The “meat” of our job is computer engineering
• However our students currently don’t have balanced skills, and

seasoned professionals are expensive to hire locally
• The working strategy so far has been publicly-funded partnerships
• However public money is “drying up” too

• Acknowledge that ⇒ enhance autonomy of public research groups

• Acknowledge that innovation is carried out by different types of
people working together; “think” vs. “invent” vs. “make” is also a
matter of personality, not only separate skills

• Educate “inventors” and “applicative engineers” separately
+ mix and match personality types in research groups

• But all should know how to write system/infrastructure software
– otherwise, no way to demonstrate inventions in architecture

• ⇒ room for improvement in the Dutch higher education programs

