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Recent thesis 
“On the 

realizability of 
hardware 

microthreading”



Current on-chip parallelism 
is based on legacy

• Historical focus on single-thread performance
(developments in general-purpose processors: registers, branch prediction, 
prefetching, out-of-order execution, superscalar issue, trace caches, etc.)

• Legacy heavily biased towards single threads:
• Symptom: interrupts are the only way to signal 

asynchronous external events
• Retro-fitting hardware multithreading is difficult 

because of the sequential core’s complexity

• What if... 
we redesigned general-purpose processors,
assuming concurrency is the norm in software?



Microgrids 
of D-RISC cores

• D-RISC cores: 
hardware multithreading + 
dynamic dataflow scheduling

• fine-grained threads: 0-cycle 
thread switching, <2 cycles 
creation overhead

• ISA instructions for thread 
management

• dedicated hardware processes 
for bulk creation and 
synchronization

• No preemption/interrupts;
events create new threads
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Example 128-core
Microgrid

• 32000+ hw threads

• 5MB distributed cache

• shared MMU
= single virtual 
address space, 
protection using 
capabilities

• Weak cache coherency

• no support for global 
memory atomics – 
instead 
synchronization using 
remote register writes
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Area estimates with CACTI: 100mm2 @ 35nm

Approximate size of one Nehalem (i7) core 
for comparison



A perspective shift

CORE I7

Function call

with 4 registers spilled 

30-100 cycles

Predictable loop

requires branch predictor
+ cache prefetching

to maximize utilization

1+ cycles per iteration 
overhead

D-RISC
WITH TMU

IN HARDWARE

Bulk thread creation 

of 1 thread, 
31 “fresh” registers

~15 cycles
(7c sync, ~8c async)

Thread family

1 thread / “iteration”
reuses common TMU 

and pipeline
no BP nor prefetch needed

no per-iteration overhead



Results, what’s next?

✓ built enough infrastructure to fit the F/OSS landscape 
– yet can’t reuse most existing OS code: no interrupts, no traps

✓ as planned, higher performance per area and per watt 
– via hand-coded benchmarks: granularity in SPEC is too coarse

• Follow-up research areas:

• Internal issues: memory consistency, scalable cache 
protocols, ISA semantics, etc.

• External issues from outside architecture: how to 
virtualize? how to map tasks over so many 
“workers”? how to port existing OS code?

• Fundamental issues: concurrent complexity theory?



Preliminary outcome

• We can make smarter processors but 
they look & feel different to system 
developers.
• Analogy: a new hexagonal Lego unit

• To gain traction: demonstrate the 
benefits in applied problems

• But this seems hard to all actors in our 
field, why is that?



Generative 
computer 

architecture



“Ideas vs. realization”
- not!

• Common fallacy: 
“coming up with an idea ≠ implementing this idea”
“Ideas are free, but execution is priceless” – Scott Ginsberg

• In computer architecture:
• some people specify components

• often using smaller components as sub-parts
• other people integrate designs into systems
• other people deploy/validate  systems to applications

• Computer architecture is an ecosystem...
different people, different responsibilities

• ... in symbiosis with software ecosystems
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Computer engineering 
at a glance
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Invention vs. application

• Two major types of personality profiles

• “Inventive” types

• creative, restless
• “if I know how it works, it’s not interesting any more”

• reward system based on abstraction & variety

• “Applicative” types

• dedicated, focused

• “will put hours in it until it works and looks nice”
• reward system based on finished products & fame



Optimization vs. 
generation

• Two major types of research in computer architecture
• Optimization – most common

eg. pipelines, new silicon technology, branch predictors, etc.

• Mostly uses the scientific method
observe-hypothesise-predict-test-analyze

• Incremental
new components comparable to previous generations 

• “Generation” (for lack of a better word) – less common
eg. processor registers, RISC, VLIW, hardware multithreading, GPU accelerators

• Profundly non-scientific: irrational human creativity

• Disruptive: not comparable, creates new areas for further work
• Test to distinguish: can we exploit the outcome using the same software?

• Generation: “no”, large software investment necessary to demonstrate
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Missing link: from 
generation to acceptance

• Main issue here becomes engineering:
• meticulousness in the realization

(eg. automated testing, documentation)

• scrupulousness in recognizing and following 
audiences (customer) expectations
(eg. check corner cases, provide autonomous demos, provide relevant tutorials)

• thus awareness of how technology fits into the larger 
picture of a market

• Best done by “applicative” people
• Activity traditionally under responsibility of “industry”: 

private enterprises, high risk but potentially high ROI.



Outcome so far

• “Computer science”
= computer engineering / “innovation” (do)
inspired/sustained by theoretical computer science (think)

• “Innovation” 
= foundational engineering (invent)
+ applicative engineering (make)

• Optimization vs. generative CS
are different paths through these activities

• Followed by different groups of people 
(different distributions of personality profiles)

• In “science organizations” we have an excess of thinkers and 
inventors, lack of applicative engineers – short on “make”



“Science vs. Innovation”
a.k.a.

Politics in computer 
engineering



Landscape 2005-2015

• All fields of IT rely on computer engineering
• And so does pretty much everyone’s life at least in 

the Western world

• Computers are invented and made by 
humans, not nature or other computers

• There are currently HUGE challenges in 
computer architecture – likely not solvable 
with optimization only

• Who will solve these problems? 
How can we facilitate generative CS?



Computer architecture 
enablers

• Things innovators must do to succeed in computer architecture:
• a priori analysis & modeling of system behavior
• develop complex & computationally expensive experiments 

towards validation of new/optimized computers
• specify components, implement simulators
• for generative CS, implement new software infrastructure 

(libraries, operating systems, compilers)

• rewrite and re-run programs written by other people and see 
how to make them run “better”

• In other words the people in charge must be both
• competent scientists 
• and seasoned system and software engineers 



The challenge of 
foundational CS

• Core issue, not specific to comp. arch.: creation is non-scientific

• not incremental, not falsifiable, not verifiable

• cannot compare at a small scale with previous generations
(cf earlier Lego brick analogy)

• need to build larger systems using the invention 
to demonstrate/see “what it’s good for” 

• success is measurable only in hindsight – sometimes years afterwards
• cannot “measure” progress incrementally – huge management risk

• Therefore, no short-term incentive to promote and facilitate gen. CS
• Unclear how to train and reward the right personality & skills in 

people



Issues of 
morals and politics

• The elephant in the room:
Why not delegate innovation entirely to industry? 
Industry is good at applied CS, why not foundational CS too?

• Morals: generative CS is increasingly captured behind 
corporate closed doors (Samsung, Apple, ARM, Intel, ...)

• our descendants will ask what did we do to foster 
openness, transparency & democracy?

• Politics: what should be the role of research organizations? 
Is it only to produce abstract models models and human-tools for corporations?

• There is more money to be gotten for new technology 
than for academic papers 
– we may want a slice of that!



Partnerships & education
(conclusion)

• The “meat” of our job is computer engineering 
• However our students currently don’t have balanced skills, and 

seasoned professionals are expensive to hire locally
• The working strategy so far has been publicly-funded partnerships
• However public money is “drying up” too

• Acknowledge that ⇒ enhance autonomy of public research groups 

• Acknowledge that innovation is carried out by different types of 
people working together; “think” vs. “invent” vs. “make” is also a 
matter of personality, not only separate skills

• Educate “inventors” and “applicative engineers” separately
+ mix and match personality types in research groups

• But all should know how to write system/infrastructure software
– otherwise, no way to demonstrate inventions in architecture

• ⇒ room for improvement in the Dutch higher education programs


