
Don’t forget 
the hardware!

Raphael ‘kena’ Poss
Universiteit van Amsterdam

7 dec. 2012

vrijdag 7 december 2012



Two parts

• The syntactic variance problem
• Compositional hardware virtualization

vrijdag 7 december 2012



Syntactic variance

vrijdag 7 december 2012



An “annoying” question

• Since the 1970’s: “pure functional 
languages are ideal to program parallel 
computers - immutability, referential 
transparency, etc.”

• 40 years later, still can’t seem to get it 
right

• What’s wrong?

vrijdag 7 december 2012



Another 
“annoying” question

• On your desktop machine:
• A “good” sort is algorithm X

• On my research platform:
• Algorithm X is difficult to parallelize

• Algorithm Y parallelizes well, and gets large 
speedups compared to mostly-sequential X

• Maybe there is yet another Z better than 
both, but yet unknown

vrijdag 7 december 2012



Another 
“annoying” question

• Is there a language and compiler in 
which a sort specification Z can 
translate to either a good X, Y or Z 
depending on the target machine?
• Haven’t found one in 60 years
• Why?

vrijdag 7 december 2012



Background: 
syntactic variance

• Chip design is “hard”: define components, connect 
them, lay them out on the chip, route the wires

• This is why Verilog and VHDL exist
• Observed: Two designs synthesized from two 

semantically equivalent but syntactically different 
descriptions in VHDL usually differ significantly in 
quality – can we eliminate this difference by better 
automated tools?

• This was identified in 1994 as the “syntactic variance 
problem” (D. Gajski ,Introduction to high-level synthesis. IEEE Des. Test Comput.)

vrijdag 7 december 2012



NO CAN’T DO

• For any sufficiently expressive transformational 
system 
(e.g. a language and all its possible compilers)

• For any initial specification
(e.g. a program that encodes an algorithm)

• There exists some equivalent implementation 
specification that can never be reached by 
transformation
(e.g. there exist some machine code that “does the same thing” 
but can never produced by any compiler for the same language) 

• (J Voeten, On the Fundamental Limitations of Transformational Design, ACM TDAES 2001)

vrijdag 7 december 2012



Constellations

J Voeten (2001)

vrijdag 7 december 2012



What this means in 
practice

• In any possible language/compiler, there 
are equivalent programs whose 
implementation quality differ
• Example: Haskell’s 20+ different sorts

• How to choose a good one?
• Human, know thy implementation

vrijdag 7 december 2012



Compositional 
hardware 

virtualization

vrijdag 7 december 2012



Machines 
we know to build

• There are many Turing-equivalent models
• In 70 years, the only computing machines 

we know to build are 
register machines and stack machines 
(and networks thereof)

• Everything else is simulated
• Including all the graph reduction 

machines of functional languages

vrijdag 7 december 2012



The essence of 
physical computers

Processor Memory

I/O devices

vrijdag 7 december 2012



What’s in a 
“function call”?

• To call:
• Write PC to [SP--]
• Write registers to [SP--]
• Jump to new PC to call

• To return:
• Read registers from [SP++] 
• Read old PC from [SP++]
• Jump to old PC to return

vrijdag 7 december 2012



What’s in a 
“function call”?

• Procedure: reusable sequence of instructions
• The author of a procedure assumes that the procedure has 

complete control over the processor
• Push/jump-Pop/jump is a compositional mechanism that 

virtualizes the processor for each called procedure
• The concept of “function call” in C is a useful abstraction 

of this mechanism
• But C also has a virtual machine, and the author of a C 

function also assumes complete control of the VM during 
the function’s execution

• compositional virtualization carries through abstraction

vrijdag 7 december 2012



A model
of function calls

Caller
Processor

Shared heap

Caller’s memory 
(stack frame)

Callee
Processor

Callee’s memory 
(stack frame)

Shared I/O

vrijdag 7 december 2012



A model
of function calls

• A “function call” is a virtualization 
mechanism:
• That creates a new virtual processor
• With its own stack memory
• Connects it to the shared heap and I/O
• Stops the caller virtual processor until 

the callee halts

vrijdag 7 december 2012



The basic components of a 
virtualization mechanism

• VP creation / deletion
• Memory creation/deletion
• Connecting / disconnecting components
• Stop a VP, start a VP
• Synchronize: “wait until VP halts”
• All these are basic computer architecture 

“operators”

vrijdag 7 december 2012



What else from there?

• A fruitful exercise: what virtualization 
mechanisms appear by using a different 
set of building operators?

• Some known mechanisms:
• function call, but without stopping the 

caller processor = thread creation
• new memory without creating a new 

processor = malloc

vrijdag 7 december 2012



Other known examples

• Interrupts (signals in C)
• Virtualization of powered-on-demand 

co-processors
• System calls interface to an OS kernel

• Virtualization of a network link 
between a process’ processor with 
own memory and an OS’ processor 
with own memory

vrijdag 7 december 2012



Recursive virtualization

• (Recursive definition: using the name of F 
in the definition body of F)

• Recursive call: using a recursive definition 
in a function-call syntax

• Recursive data structure: using a recursive 
definition in a data-use syntax

• Recursive thread creation: using a recursive 
definition in a thread-creation syntax

vrijdag 7 december 2012



A possible research 
statement

• Conjecture:
• The set of hardware virtualization 

mechanisms abstracted in a language 
is exactly the machine intuition used 
by programmers to write good 
programs for a given platform 

vrijdag 7 december 2012



Why this is useful

• May help tackle the problem of parallel 
programming: “What abstractions are useful?” 

• I’d rather ask: 
“What virtualization combinators can be 
designed that help programmers productively 
exploit parallel hardware?” 

• By thinking hardware virtualization 
combinators, instead of functional abstraction, one 
can discover new, useful abstract mechanisms

• For example, recursive placement of threads

vrijdag 7 december 2012



This is where 
I got so far

• Comments, suggestions?
• Thank you!

vrijdag 7 december 2012


