
Compositional
hardware

virtualization
Raphael ‘kena’ Poss

University of Amsterdam
January 11th, 2014

maandag 13 januari 2014

Context

• Programming is a human activity
• More and people need to program
• There are programming problems

where languages can’t help (well)
• Where I’m coming from:

Understanding how people think
to better teach them how to program

maandag 13 januari 2014

Practical problem:
syntactic variance

• Observed: functional systems
synthesized from semantically equivalent
but syntactically different specs usually
differ significantly in quality* – can we
eliminate this difference by better
automated tools?

• This was identified in 1994 as the
“syntactic variance problem”
(D. Gajski ,Introduction to high-level synthesis. IEEE Des. Test Comput.)

maandag 13 januari 2014

Example

• f :: [Int] -> [Int]

• f = map sum . transpose . transpose .
 map (flip replicate 1)

• f (p:xs) = f [y | y <- xs, y < p]
 ++ [p] ++
 f [y | y <- xs, y >= p]

• f (h:tl) = snd $ foldl g (h, []) tl
 where
 g (s, r) x | x < s = (x, s:r)
 | otherwise = (s, x:r)

maandag 13 januari 2014

NO CAN’T DO

• For any sufficiently expressive transformational
system
(e.g. set of source language(s), machine language(s) and all their
possible compilers from one to another)

• For any initial specification
(e.g. a program that encodes an algorithm)

• There exists some equivalent implementation
specification that can never be reached by
transformation
(e.g. there exist some program that “does the same thing” but
can never be produced by any compiler for the same input)

• (J Voeten, On the Fundamental Limitations of Transformational Design, ACM TDAES 2001)

maandag 13 januari 2014

Constellations

J Voeten (2001)

maandag 13 januari 2014

What this means in
practice

• In any* language/compiler, there are equivalent
programs whose extra-functional characteristics
differs; but people must choose at some point

• How do functional programmers choose?

• Academic: legibility, clarity, simplicity, elegance

• paid programmer: also, but
extra-functional behavior too

maandag 13 januari 2014

Extra-functional
behavior (EFB)

• “Extra” = “not specifiable* in language”

• “Behavior” = “what happens at run-time”
• Examples:

• Time to result: not specifiable because halting problem

• Memory usage: because boring

• Throughput/latency: because HW-dependent

• Jitter: because user decides scenario

• Battery life: because science not there yet

• Includes but not limited to “performance”

maandag 13 januari 2014

Abstract machine
models (AMMs)

• Really the core topic of this talk
• Taught to newbies explicitly by some PLs

• Usually not, though (e.g. Haskell)
• Still, all programmers use them

• How do programmers build their own AMMs?
• Which “intuition-only” AMMs are most useful

for “hard” programming tasks?
• How to capture them to later teach them?

maandag 13 januari 2014

Machines
we know to build

• The only hardware computers* are
register machines and queue machines
(and networks thereof)

• Everything else is simulated in software
• Including the stack and graph reduction

machines of functional languages
• But EFB emerges from hardware. Let’s

look at what is preserved.

maandag 13 januari 2014

The essence of
physical computers

Processor Memory

I/O devices

NB: This model gives productive EFB intuitions
maandag 13 januari 2014

A model
of function calls

Caller
Processor

Caller’s memory
(stack frame)Shared I/O

Shared heap

This AMM carries the EFB intuitions of the
equivalent hardware machine

maandag 13 januari 2014

A model
of function calls

Caller
Processor

Caller’s memory
(stack frame)Shared I/O

Shared heap

Callee
Processor

Callee’s memory
(stack frame)

This AMM carries the EFB intuitions of the
equivalent hardware machine

maandag 13 januari 2014

A model
of function calls

Root VP
Shared heap

Local RAM

Callee VP1
Shared I/O

Recursion is modeled by compositional
replication

Callee VP2

Callee VP3
...

Local RAM

Local RAM

Local RAM

maandag 13 januari 2014

What’s in a
“function call”?

• Push/jump-Pop/jump is a compositional
mechanism that virtualizes the processor for
each called procedure

• “function call” is an abstraction of this
• Programmers don’t think push/pop, but

picture mentally a fresh virtual context at
each call level

• Compositional virtualization
carries through abstraction

maandag 13 januari 2014

Virtual hardware:
a meta-functional model

• Component = VP | RAM | IO
• Operators = New | Dup | Del

 | Connect | Disconnect
 | Start | Pause | Reset
 | Wait until self-pause

• EFB intuition = mental program in this
model, not encoded in functional specs

• Graph structure makes the model
compositional

maandag 13 januari 2014

Other known examples

• Interrupts / async signals
• Virtualization of powered-on-demand co-

processors
• Process/thread creation

• function call, but without stopping the caller VP
• System call interface to an OS kernel

• Virtualization of a network link between a
process’ processor with own memory and an
OS’ processor with own memory

maandag 13 januari 2014

Predictive power

• Recursive function calls:
(mental) stack of VPs, only one running at a time

• Recursive thread creation:
same graph, multiple VPs running simultaneously

• Tail recursion: only one VP “alive” at a time
• Example predictable EFBs using this model:

• space usage: additive with both threads & calls,
constant with tail recursion

• power: additive with threads, not calls & TR

maandag 13 januari 2014

Conclusion

• Programmers must mentally translate the functional evaluation
strategy to an AMM to reason about EFB

• My research: can we have both powerful abstractions and
powerful AMMs?

• Open questions:
• how many different AMMs are relevant/useful for a

programmer population working on a given HW platform
and programming task?

• How reusable are teachable AMMs?
• Should we invest in teaching AMMs or rather teaching how

to build them?
• Comments, suggestions?

maandag 13 januari 2014

