
MUCH MODELS! MANY SIMPLICITY?
Raphael ‘kena’ Poss, University of Amsterdam

WOW

AMAZE

Putting Heterogeneous High-Performance Computing at the Fingertips of Domain Experts 
Shonan Village Center, Japan, November 17-20, 2015

1

Trained with a HP library for generic image processing (Olena)
Created a HP library for generic FSM processing (Vaucanson)

Teaching: C / Unix, compiler construction

Wisdom acquired:

C++ with templates = HPC + functional programming without the name

Open standards essential for quality and against vendor lock-in

WHO’S THIS GUY ANYWAYS?

2001-2003

2

Software engineering with enterprise RDBMS + embedded DSL
Specialized in HP object-oriented distributed data stores

Wisdom acquired:

Locality is key

Data layout drives algorithm design, not the other way around

You can’t (often) choose your layouts in real-world apps

People are really uncomfortable with too rapid changes

WHO’S THIS GUY ANYWAYS?

2001-2003 2006-2008

3

WHO’S THIS GUY ANYWAYS?

2001-2003 2006-2008 2008-2011

Hired to create a “automatic parallelizing C compiler”
for a new dataflow/VN hybrid micro-arch arranged as many-core;

Ended up writing its codegen back-end and OS instead

Teaching: Parallel programming, compiler construction

Wisdom acquired:

Hardware multi-threading absolutely essential to MP HPC
Dataflow scheduling cheaper than superscalar for the same benefits

However both are complicated to explain/teach/model/adopt

Programmers really do not understand caching

4

WHO’S THIS GUY ANYWAYS?

2011-2013

Assigned to work on the unification of run-time back-ends for  
a HPC streaming dataflow coordination language (Hi Clemens!)

Teaching: computer architecture

Wisdom acquired:

No coordination possible without operational semantics in PL
(“pure FP for HPC is like trying to run with one leg”)  

Programmers do care about operational semantics
But: only a little!

Programmers do not understand implicit caches and explicit memory

2001-2003 2006-2008 2008-2011

5

WHO’S THIS GUY ANYWAYS?

2011-2013 2014-present2001-2003 2006-2008 2008-2011

Own research: co-design of future general-purpose multi-cores
with their software stack but also abstract models

Paid for: new processor for ESA, new OS for ASML, teaching materials

Teaching: computer architecture, operating systems

Wisdom acquired:

Unix is there to stay, and there are actually good scientific reasons

Programmers don’t get Von Neumann, but they get BSP, Actors and PNs
Programmers don’t get caching and memory, but they get locality

First 2 PL learned condition the entire intellectual career of a programmer

6

WHAT HETEROGENEITY MEANS TO ME

Gigabit
Ethernet

UDroid-X3

ARM Big.LITTLE
+ MALI

Parallella

Epiphany
+ Zinq FPGA

TTA Array

SMP UMA
2-cores + GPU

SMP
48-cores

NUMA

Microgrid
of D-RISC

Intel
MIC

7-1

Diversity of ISA,  
similar micro-arch and system arch

WHAT HETEROGENEITY MEANS TO ME

Gigabit
Ethernet

UDroid-X3

ARM Big.LITTLE
+ MALI

Parallella

Epiphany
+ Zinq FPGA

TTA Array

SMP UMA
2-cores + GPU

SMP
48-cores

NUMA

Microgrid
of D-RISC

Intel
MIC

7-2

Diversity of ISA,  
similar micro-arch and system arch Same ISA & micro-arch,

Diversity of system arch

WHAT HETEROGENEITY MEANS TO ME

Gigabit
Ethernet

UDroid-X3

ARM Big.LITTLE
+ MALI

Parallella

Epiphany
+ Zinq FPGA

TTA Array

SMP UMA
2-cores + GPU

SMP
48-cores

NUMA

Microgrid
of D-RISC

Intel
MIC

7-3

Diversity of ISA,  
similar micro-arch and system arch Same ISA & micro-arch,

Diversity of system arch

Diversity of ISA, system arch and micro-arch

WHAT HETEROGENEITY MEANS TO ME

Gigabit
Ethernet

UDroid-X3

ARM Big.LITTLE
+ MALI

Parallella

Epiphany
+ Zinq FPGA

TTA Array

SMP UMA
2-cores + GPU

SMP
48-cores

NUMA

Microgrid
of D-RISC

Intel
MIC

7-4

RESEARCH QUESTIONS

8-1

RESEARCH QUESTIONS

➤ How to explain  
complex parallel systems 
to 1st term undergrads 
so they can successfully write 
efficient & scalable code 
by their 2nd term?

8-2

RESEARCH QUESTIONS

➤ How to explain  
complex parallel systems 
to 1st term undergrads 
so they can successfully write 
efficient & scalable code 
by their 2nd term?

➤ What would Unix look like if
designed for 21st century
computers?

8-3

RESEARCH QUESTIONS

➤ How to explain  
complex parallel systems 
to 1st term undergrads 
so they can successfully write 
efficient & scalable code 
by their 2nd term?

➤ What would Unix look like if
designed for 21st century
computers?

➤ What should be the BASIC
and C of our new computers?

8-4

➤ An abstraction of a class of computer systems
sufficient to reason about its behavior while
executing a class of algorithms

➤ Example “pure AMMs” without a specific PL or code IR:  
Turing, Von Neumann, Harvard, P-RAM, Dataflow, BSP,
Unix

➤ All modern PL AMMs are simulated upon a platform,
using assumptions about the platform defined in the
platform’s AMM (usually VN/P-RAM)

WHAT’S AN AMM (ABSTRACT MACHINE MODEL)?

9

TERM RELATIONSHIPS

“Computing models” = Union of all three

Abstract machine models Programming models

Architecture models

C/C++

Unix JVM

BEAM

BSP

Turing machines

Queue machines

P-RAM

Harvard,

Von Neumann

SMP Dist.mem

LLVM

OpenCL

CUDA

NB: These things do

not advertise one AMM,

and that is a problem.

10

PLATFORM ABSTRACT MACHINE MODELS, 1950-2015

11-1

PLATFORM ABSTRACT MACHINE MODELS, 1950-2015

➤ Von Neumann / Harvard / P-RAM (threads, etc.)

➤ Building blocks: N active sequential processors + 1 RAM

➤ Perf. predictive power only when programmed via BSP

➤ Performance scalability OR software composability, choose only 1!

11-2

PLATFORM ABSTRACT MACHINE MODELS, 1950-2015

➤ Von Neumann / Harvard / P-RAM (threads, etc.)

➤ Building blocks: N active sequential processors + 1 RAM

➤ Perf. predictive power only when programmed via BSP

➤ Performance scalability OR software composability, choose only 1!

➤ Dataflow-like (incl. most RTS for lazy FP evaluation)

➤ Building blocks: N on-demand, “passive” functional units + 1 tag soup

➤ Perf. predictive power only for small tag stores and static graphs

➤ Terrible at expressing priorities in mixes of data / control tasks 
Poor at controlling locality

11-3

PLATFORM ABSTRACT MACHINE MODELS, 1950-2015

➤ Von Neumann / Harvard / P-RAM (threads, etc.)

➤ Building blocks: N active sequential processors + 1 RAM

➤ Perf. predictive power only when programmed via BSP

➤ Performance scalability OR software composability, choose only 1!

➤ Dataflow-like (incl. most RTS for lazy FP evaluation)

➤ Building blocks: N on-demand, “passive” functional units + 1 tag soup

➤ Perf. predictive power only for small tag stores and static graphs

➤ Terrible at expressing priorities in mixes of data / control tasks 
Poor at controlling locality

➤ Especially missing: models for heterogeneous platforms,  
ability to predict/control extra-functional behavior other than time

11-4

PL. VS. IR VS. AMM

PLs with 1+ AMM PLs with well-defined IR

PLs with 1 AMM XSLT

Haskell

SaC
Chapel

C/C++
Java

Erlang

LLVM

CUDA

OpenCL

(PLs with no AMM nor IR)

HPF

Coq

JS
Prolog

.NET

12-1

PL. VS. IR VS. AMM

PLs with 1+ AMM PLs with well-defined IR

PLs with 1 AMM XSLT

Haskell

SaC
Chapel

C/C++
Java

Erlang

LLVM

CUDA

OpenCL

(PLs with no AMM nor IR)

HPF

Coq

JS
Prolog

Danger

zone!

.NET

12-2

PL. VS. IR VS. AMM

PLs with 1+ AMM PLs with well-defined IR

PLs with 1 AMM XSLT

Haskell

SaC
Chapel

C/C++
Java

Erlang

LLVM

CUDA

OpenCL

(PLs with no AMM nor IR)

HPF

Coq

JS
Prolog

This is where you want to be!

Danger

zone!

.NET

12-3

PL. VS. IR VS. AMM

PLs with 1+ AMM PLs with well-defined IR

PLs with 1 AMM XSLT

Haskell

SaC
Chapel

C/C++
Java

Erlang

LLVM

CUDA

OpenCL

(PLs with no AMM nor IR)

HPF

Coq

JS

But not here – too many constraints

Prolog

This is where you want to be!

Danger

zone!

.NET

12-4

WISHFUL THINKING VS. REALITY

GPU CPU FPGA

AMM1 AMM2 AMM3

What we think we have:

13-1

WISHFUL THINKING VS. REALITY

GPU CPU FPGA

AMM1 AMM2 AMM3

HLPL
e.g. SAC,
Haskell

HL
AMM

What we think we have:

13-2

WISHFUL THINKING VS. REALITY

GPU CPU FPGA

AMM1 AMM2 AMM3

HLPL
e.g. SAC,
Haskell

HL
AMM

IR
e.g. LLVM, OpenCL,

CUDA, PENCIL,,,

Preprocessing

What we think we have:

13-3

WISHFUL THINKING VS. REALITY

GPU CPU FPGA

AMM1 AMM2 AMM3

HLPL
e.g. SAC,
Haskell

HL
AMM

IR
e.g. LLVM, OpenCL,

CUDA, PENCIL,,,

Preprocessing

Magic

What we think we have:

13-4

WISHFUL THINKING VS. REALITY

GPU CPU FPGA

AMM1 AMM2 AMM3

HLPL
e.g. SAC,
Haskell

HL
AMM

IR
e.g. LLVM, OpenCL,

CUDA, PENCIL,,,

Preprocessing

Magic

What we think we have:

GPU CPU FPGA

AMM1 AMM2 AMM3

What we actually have:

13-5

WISHFUL THINKING VS. REALITY

GPU CPU FPGA

AMM1 AMM2 AMM3

HLPL
e.g. SAC,
Haskell

HL
AMM

IR
e.g. LLVM, OpenCL,

CUDA, PENCIL,,,

Preprocessing

Magic

What we think we have:

HLPL
e.g. SAC,
Haskell

GPU CPU FPGA

AMM1 AMM2 AMM3

What we actually have:

13-6

WISHFUL THINKING VS. REALITY

GPU CPU FPGA

AMM1 AMM2 AMM3

HLPL
e.g. SAC,
Haskell

HL
AMM

IR
e.g. LLVM, OpenCL,

CUDA, PENCIL,,,

Preprocessing

Magic

What we think we have:

HLPL
e.g. SAC,
Haskell

IR
e.g. LLVM, OpenCL,

CUDA, PENCIL,,,

Not enough
magic

GPU CPU FPGA

AMM1 AMM2 AMM3

What we actually have:

13-7

WISHFUL THINKING VS. REALITY

GPU CPU FPGA

AMM1 AMM2 AMM3

HLPL
e.g. SAC,
Haskell

HL
AMM

IR
e.g. LLVM, OpenCL,

CUDA, PENCIL,,,

Preprocessing

Magic

What we think we have:

HLPL
e.g. SAC,
Haskell

IR
e.g. LLVM, OpenCL,

CUDA, PENCIL,,,

Not enough
magic

GPU CPU FPGA

AMM1 AMM2 AMM3

What we actually have:

AMM1AMM2

AMM3

13-8

WHERE WE COULD GO

GPU CPU FPGA

AMM1 AMM2 AMM3

AMX AMX AMX

IR
(or not)

Not too much magic

AMX

HLPL1
HL

AMM1

AMX

HLPL2
HL

AMM2

Not too much magic

Unified platform AMM
for both OS/PL designers
and “expert” programmers

14

EVOLVING ABSTRACT MACHINE MODELS

➤ Previously:

➤ Co-evolution of AMM and architecture design
independent from application code

➤ OS/PL implementers “subject” to platform AMM

➤ Platform AMM seeps through app. design and crystallizes
there, makes translations of code to another AMM difficult

➤ Back-compatibility with previous platform AMMs
paramount

15

EVOLVING ABSTRACT MACHINE MODELS

➤ Now:
➤ Diversity of HLPLs each with own operational semantics

and AMM

➤ Platform AMM primary audience is OS/PL implementer,  
not app. dev.

➤ app. dev only cares about platform AMM when overriding
OS/PL intelligence

➤ Hardware vendors listen to OS/PL demands about
platform AMM in new architectures (cf. GPGPUs)

➤ Suggested methodology:  
Evolve arch. and AMM using HLPL design as guide!

16

PROGRAMMING MODELS FOR 2010-2030

17-1

PROGRAMMING MODELS FOR 2010-2030

➤ Surprise observation:  
beginner programmers are comfortable coding with process networks
(PNs) and conceptualizing / explaining data flows

➤ Suggests streaming calculus may be viable alternative to
term rewriting / lambda calculus for base semantics

➤ As long as PL provides powerful PN assembly combinators:
people hate wiring manually

17-2

PROGRAMMING MODELS FOR 2010-2030

➤ Surprise observation:  
beginner programmers are comfortable coding with process networks
(PNs) and conceptualizing / explaining data flows

➤ Suggests streaming calculus may be viable alternative to
term rewriting / lambda calculus for base semantics

➤ As long as PL provides powerful PN assembly combinators:
people hate wiring manually

➤ Perhaps we could start with PN-based AMMs and build
the rest upon this?

17-3

ABSTRACT MACHINE MODELS FOR PNS

➤ Example: what if we build OS/PLs upon PN semantics?

➤ OK, then hardware must be good at supporting PNs

➤ Surprise! already the case since ~1975 in-networks thanks
to clusters and ~2005 on-chip thanks to NoCs

➤ OK, then AMMs must be good at predicting behavior

➤ Hmmm, VN/PRAM and DF just won’t cut it. :(

➤ We need new AMMs that model network topology,
interconnect protocols and asymmetry in hw platforms  
(now working on this with AM3)

➤ NB: Traditional distributed computing models insufficient: 
new need to separate cores from memory from accelerators

18

AM3 – ABSTRACT MACHINE MODEL FOR MODERN (OR MANY-CORE) MACHINES

➤ Work in progress! 
 
see DOI 10.1109/TPDS.2015.2492542  
 
 

➤ No preemption, no syscalls, no privilege separation in ISA, shared memory optional 
Network provides isolation / interfaces

➤ Uniform access interface to heterogeneous compute elements

➤ Compute element = “virtual processor group”, can be heterogeneous

➤ Can be CUDA warp, functional unit, hardware thread group, iRAM

➤ Substitutes VN/P-RAM to implement OS or PL/RTS, sufficient to run Unix :)

SN
CN

set of SN receivers set of CN senders

VP group
All VPs may
send on SN
and receive on CN

19

hw complexity
per core

more complex,
fewer cores/area

more simple,
more cores/area

machine model features
visible from thread code

feature-richrelatively simple

Many-cores built from
fully-featured general-

purpose cores
(eg. x86 SMPs)

"accelerator"
many-cores
(eg CUDA
GPGPUs)

AM³-
compatible
many-cores

wins: hw simplification,
more cores/area

and performance/watt,
native support for NoCs

wins: better compatibility
with existing software,

more features in programming models

20

OTHER AMM EVOLUTION DIRECTIONS

➤ Surprise observation*: often enough, programmers do know
how to optimize better than the compiler/RTS

➤ PL must provide syntax/semantics with opt-in overrides

➤ HW + AMMs must provide abstractions for reasoning
about (and enforcing) functional equivalence of
operational mechanisms

➤ (* not only an observation, actually a theorem since 2001)

➤ Empirical result 2000-2015: people like run-time tuning!

➤ Still incomplete support in HW + AMM: how to
instrument an application systematically, cross-PL and
cross-platform for comprehensive run-time tuning?

21

PROPOSAL: THE “BASIC” LANGUAGE OF FUTURE COMPUTERS…

1. has a simple, easy to understand AMM 
that makes useful predictions on heterogeneous platforms

2. provides main syntax to declare intent  
and annotations/typing to supply opt-in elidable override mechanisms

3. has processes and dataflow links as main abstract building blocks
expressed using combinators,  
not functions, data structures, processor logic or memory contents

4. provides run-time tuning knobs separate from alg. design to:

➤ trade space vs. time costs

➤ trade latency vs. throughput

➤ trade performance vs. accuracy/reliability/determinism/accountability

➤ trade data sharing/performance vs. isolation/privacy/segregation

22

THANK YOU!
Questions?

23

