Can we panic yet?

Error handling in Go

Go Systems Conf SF 20
Raphael ‘kena’ Poss

Raphael / kena / knz

9 Netherlands

O @knz
y (@kena42
N https//dr-knz.net

w @kenad?2

https://github.com/knz
https://twitter.com/kena42
https://dr-knz.net
https://twitch.tv/kena42

Background

Since Go 1.0: errors are objects

type error interface { Error() string }
“Idiomatic” error checking and propagation:

if err := myfunc(); err != nil {
return err

}

This is still advertised in the Tour, guides, tutorials, etc.

Can we do better?

In this talk:
code performance and programmer productivity.

An experiment

Errors and exceptions

func unitOfWork(arg int) (int, error) {
if arg == 0 { return -1, errObj }

return arg
}
func doWork(work int) (r int, err error) {
for 1 := 0; 1 < work; i++ {
v, err := unitOfWork(work)
if err != nil { return -1, err }
r+= v
}

return r, nil

func unitOfWork(arg int) int {

if arg == 0 { panic(errObj) }
return arg

func doWork(work int) (r int, err error) {

defer func(){ err = recover().(error) }()

for 1 := 0; 1 < work; 1++ {
r += unitOfWork(work)
}

return r, nil

Errors and exceptions - performance

Latency of computation (total, zoom on small work)

- Q0 baseline
go error returns
1 = QO panics

i
°
=
Q
(-
L
v
o
[=
n
[—
L)
-
(=]
+—

work N (zoomed in)

Errors and exceptions - performance

Latency of computation (total)

41 = go baseline
go error returns
| = go panics

v
©
c
o
O
L
v
o
c
n
c
]
-
o
+—

Key points

- Calling convention: machine code inserted by compiler
(for every function body and at every function call)
- Cannot be “optimized away” even by cleverest compiler

- So passing arguments and returning values has a cost
- Moreso in Go which uses memory for arguments/returns instead of registers [cite]

- So do conditionals: all these “err I= nil” are pure overhead

In comparison, the overhead of a well-placed defer is fixed and can be amortized

Other considerations: overall code size vs CPU I-caches; D-cache pressure

https://dr-knz.net/go-calling-convention-x86-64-2020.html

Go might get a
register-based calling convention

What happens next?

Ongoing project: new ABI

GitHub:

cmd/compile: switch to a reqister-based calling convention for Go functions
#40724

Proposes register-based calling convention for x86-64, arm and possibly others.
Tentatively proposed for Go 1.16, likely available only later.

Support for all target architectures will also wait subsequent releases.

https://github.com/golang/go/issues/40724
https://github.com/golang/go/issues/40724

What we can expect

- Overhead of argument passing and return values
comes back in line with equivalent C++ code
- Likely 1-4% performance improvement across all Go code

What will remain:

- Overhead of moving data around, albeit in registers
- Returning 1 error value on every call will remain more expensive than none

So exception-driven error handling will remain cheaper perf-wise!

Readability and correctness

Look again: errors and exceptions

func unitOfWork(arg int) (int, error) {
if arg == 0 { return -1, errObj }

return arg
}
func doWork(work int) (r int, err error) {
for 1 := 0; 1 < work; i++ {
v, err := unitOfWork(work)
if err != nil { return -1, err }
r+= v
}

return r, nil

func unitOfWork(arg int) int {
if arg == 0 { panic(errObj) }
return arg

}

func doWork(work int) (r int, err error) {
defer func(){ err = recover().(error) }()

for 1 := 0; 1 < work; i1++ {
r += unitOfWork(work)

}

return r, nil

Look again: errors and exceptions

func myFunc() error { func myFunc() (err error) {

if err := stepA(); err != nil { defer func(){ err = recover().(error) }()
return err

} stepA()

if err := stepB(); err != nil { stepB()
return err stepC()

}

if err := stepC(); err != nil { return nil
return err }

}

return nil

In the real world - CockroachDB

- 14000+ occurrences of err '= nilorerr == nil
- in manually maintained code!

- We found bugs due to typing mistakes, multiple times:
- "if err == nil”instead of “if err != nil” (or vice-versa)
- “return nil"instead of “return err”
- Now protected by linter, but the linter logic must also be developed and maintained

- Also, certain parts of CockroachDB are perf-sensitive too: SQL query
planning and execution, low-level MVCC scans, etc.

/ Build is the top-level function to build the memo structure inside

/ Builder.factory from the parsed SQL statement in Builder.stmt. See the
; comment above the Builder type declaration for details.

/ If any subroutines panic with a non-runtime error as part of the build
| process, the panic is caught here and returned as an error.

unc b ‘Builder) Build) (err error) |

defer func() |
ifr - R r - onil |
// This code allows us to propagate errors without adding lots of checks
// for “if err != nil‘ throughout the construction code. This is only
// possible because the code does not update shared state and does not
// manipulate locks.
if ok, e - errorutil ShouldCatch'r . ok |
err — e
| else {
panic r
}

// ShouldCatch is used for catching errors thrown as panics. Its argument is the
/| object returned by recover(); it succeeds if the object is an error. If the
/] error is a runtime.Error, it is converted to an internal error (see

/| errors.AssertionFailedf).

func ShouldCatch obj interface!!) (ok bool, err error) |

err, ok = obj.(error)
if ok {
if errors HasInterface err. | ‘runtime Error) nil)
// Convert runtime errors to internal errors, which display the stack and
/| get reported to Sentry.
err — errors HandleAsAssertionFailure err

}
}

return ok, err

In the real world - CockroachDB

What we did:

- All the SQL planning logic under a single API call uses no error returns,
instead panic used with error objects
- defer/recover (i.e. try/catch) at API boundary

Same for vectorized/distributed query execution
Planning to extend this pattern to multiple other components in the project

Engineers report X% extra work satisfaction from increased maintainability

Recommendations

Avold redundant effort, DRY

- The visual occurrences of “if err I=nil .." when the handling is trivial must

become more concise

- To make the code faster to read, teach and maintain
- Beware of fallacious arguments—ergonomics in toy example change at 10000+ occurrences

- Programmers should not have to manually type in the common pattern

- To reduce the amount of typing work
- To reduce the likelihood of mistakes and correctness bugs

How? Either keep error returns with syntactic sugar, like in Rust, or

Exceptions are better (inside API boundaries)

- Exceptions (a.k.a. controlled panics) yield simpler function signatures
Makes the code easier to read, teach and maintain

- Exceptions yield better performance
When errors are uncommon
And error handling happens at the “top” of multiple levels of computational calls

This is reliably achieved by keeping errors explicit at APl boundaries, with
panic-driven error handling inside the API boundaries

FWIW Go stdlib’s encoding/json already does it, but no one talks about it

Patterns

To report an error:
panic(errors.New(...))

To add context to an exception:
defer func() {

if err, ok := recover().(error); ok {
panic(errors.Wrap(err, ..))
}
10

Useful: Go runtime throws string for most faults
and its errors implement interface runtime.Error

To translate an exception to an error:

func myFunc() (err error) {
defer func() {
if r := recover(); r != nil {
if rerr, ok := r.(error); ok &&
lerrors.HasInterface(rerr, (*runtime.Error)(nil)) {
err = rerr
} else { panic(r) } // rethrow

O

Defer callbacks are just functions!

defer annotateErr(annot) func myFunc() (err error) {
defer catchErr(&err)

}
// this can be put in a library // this can be put in a library
func annotateErr(annot string) { func catchErr(err *error) {
if err, ok := recover().(error); ok { r := recover()
/] rethrow, annotated if rerr, ok := r.(error); ok &&
panic(errors.Wrap(err, annot)) lerrors.HasInterface(rerr, (*runtime.Error)(nil)) {
} *err = rerr
} } else if r != nil { panic(r) }

- Evaluate how robust your
project is to mistakes around
“err I= nil” and “return err”

Can R
perly review what
We Pan]_C Yet? programmer productivity really

means
How you can help
- Petition for an update to the
Tour of Go: promote
exceptions as a viable
alternative to error returns

https://tour.golang.org/methods/19

Thank you

Work sponsored by
Cockroach LABS

More reading

- The Go low-level calling convention on x86-64 (updated)
- Errors vs. exceptions in Go and C++ in 2020—Why and how exceptions are
still better for performance, even in Go

Tangentially related (shameless plug):

- Documentation for cockroachdb/errors

https://dr-knz.net/go-calling-convention-x86-64-2020.html
https://dr-knz.net/go-errors-vs-exceptions-2020.html
https://dr-knz.net/go-errors-vs-exceptions-2020.html
https://github.com/cockroachdb/errors/#cockroachdberrors-go-errors-with-network-portability

