
Can we panic yet?
Error handling in Go

Go Systems Conf SF ‘20
Raphael ‘kena’ Poss

Raphael / kena / knz

@knz

@kena42

Netherlands

https://dr-knz.net

@kena42

https://github.com/knz
https://twitter.com/kena42
https://dr-knz.net
https://twitch.tv/kena42

Background

Since Go 1.0: errors are objects

type error interface { Error() string }

“Idiomatic” error checking and propagation:

if err := myfunc(); err != nil {
 return err
 }

This is still advertised in the Tour, guides, tutorials, etc.

Can we do better?
In this talk:

code performance and programmer productivity.

An experiment

Errors and exceptions

func unitOfWork(arg int) (int, error) {

 if arg == 0 { return -1, errObj }

 return arg

}

func doWork(work int) (r int, err error) {

 for i := 0; i < work; i++ {

 v, err := unitOfWork(work)

 if err != nil { return -1, err }

 r += v

 }

 return r, nil

}

func unitOfWork(arg int) int {

 if arg == 0 { panic(errObj) }

 return arg

}

func doWork(work int) (r int, err error) {

 defer func(){ err = recover().(error) }()

 for i := 0; i < work; i++ {

 r += unitOfWork(work)

 }

 return r, nil

}

Errors and exceptions - performance

Errors and exceptions - performance

Key points

- Calling convention: machine code inserted by compiler
(for every function body and at every function call)

- Cannot be “optimized away” even by cleverest compiler
- So passing arguments and returning values has a cost

- Moreso in Go which uses memory for arguments/returns instead of registers [cite]

- So do conditionals: all these “err != nil” are pure overhead

In comparison, the overhead of a well-placed defer is fixed and can be amortized

Other considerations: overall code size vs CPU I-caches; D-cache pressure

https://dr-knz.net/go-calling-convention-x86-64-2020.html

Go might get a
register-based calling convention

What happens next?

Ongoing project: new ABI

GitHub:

cmd/compile: switch to a register-based calling convention for Go functions
#40724

Proposes register-based calling convention for x86-64, arm and possibly others.

Tentatively proposed for Go 1.16, likely available only later.

Support for all target architectures will also wait subsequent releases.

https://github.com/golang/go/issues/40724
https://github.com/golang/go/issues/40724

What we can expect

- Overhead of argument passing and return values
comes back in line with equivalent C++ code

- Likely 1-4% performance improvement across all Go code

What will remain:

- Overhead of moving data around, albeit in registers
- Returning 1 error value on every call will remain more expensive than none

So exception-driven error handling will remain cheaper perf-wise!

Readability and correctness

Look again: errors and exceptions

func unitOfWork(arg int) (int, error) {

 if arg == 0 { return -1, errObj }

 return arg

}

func doWork(work int) (r int, err error) {

 for i := 0; i < work; i++ {

 v, err := unitOfWork(work)

 if err != nil { return -1, err }

 r += v

 }

 return r, nil

}

func unitOfWork(arg int) int {

 if arg == 0 { panic(errObj) }

 return arg

}

func doWork(work int) (r int, err error) {

 defer func(){ err = recover().(error) }()

 for i := 0; i < work; i++ {

 r += unitOfWork(work)

 }

 return r, nil

}

Look again: errors and exceptions

func myFunc() error {

 if err := stepA(); err != nil {

 return err

 }

 if err := stepB(); err != nil {

 return err

 }

 if err := stepC(); err != nil {

 return err

 }

 return nil

}

func myFunc() (err error) {

 defer func(){ err = recover().(error) }()

 stepA()

 stepB()

 stepC()

 return nil

}

In the real world - CockroachDB

- 14000+ occurrences of err != nil or err == nil
- in manually maintained code!

- We found bugs due to typing mistakes, multiple times:
- “if err == nil” instead of “if err != nil” (or vice-versa)
- “return nil” instead of “return err”
- Now protected by linter, but the linter logic must also be developed and maintained

- Also, certain parts of CockroachDB are perf-sensitive too: SQL query
planning and execution, low-level MVCC scans, etc.

In the real world - CockroachDB

What we did:

In the real world - CockroachDB

What we did:

In the real world - CockroachDB

What we did:

- All the SQL planning logic under a single API call uses no error returns,
instead panic used with error objects

- defer/recover (i.e. try/catch) at API boundary

Same for vectorized/distributed query execution

Planning to extend this pattern to multiple other components in the project

Engineers report X% extra work satisfaction from increased maintainability

Recommendations

Avoid redundant effort, DRY

- The visual occurrences of “if err != nil …” when the handling is trivial must
become more concise

- To make the code faster to read, teach and maintain
- Beware of fallacious arguments—ergonomics in toy example change at 10000+ occurrences

- Programmers should not have to manually type in the common pattern
- To reduce the amount of typing work
- To reduce the likelihood of mistakes and correctness bugs

How? Either keep error returns with syntactic sugar, like in Rust, or ….

Exceptions are better (inside API boundaries)

- Exceptions (a.k.a. controlled panics) yield simpler function signatures
- Makes the code easier to read, teach and maintain

- Exceptions yield better performance
- When errors are uncommon
- And error handling happens at the “top” of multiple levels of computational calls

This is reliably achieved by keeping errors explicit at API boundaries, with
panic-driven error handling inside the API boundaries

FWIW Go stdlib’s encoding/json already does it, but no one talks about it

Patterns

To report an error:
panic(errors.New(...))

To add context to an exception:
defer func() {

 if err, ok := recover().(error); ok {

 panic(errors.Wrap(err, …))

 }

}()

Useful: Go runtime throws string for most faults
and its errors implement interface runtime.Error

To translate an exception to an error:

func myFunc() (err error) {

 defer func() {

 if r := recover(); r != nil {

 if rerr, ok := r.(error); ok &&

!errors.HasInterface(rerr, (*runtime.Error)(nil)) {

 err = rerr

 } else { panic(r) } // rethrow

 }

 }()

 …

}

Defer callbacks are just functions!

defer annotateErr(annot)

// this can be put in a library

func annotateErr(annot string) {

 if err, ok := recover().(error); ok {

 // rethrow, annotated

 panic(errors.Wrap(err, annot))

 }

}

func myFunc() (err error) {

 defer catchErr(&err)

 …

}

// this can be put in a library

func catchErr(err *error) {

 r := recover()

 if rerr, ok := r.(error); ok &&

 !errors.HasInterface(rerr, (*runtime.Error)(nil)) {

 *err = rerr

 } else if r != nil { panic(r) }

}

Can
We Panic Yet?

- Evaluate how robust your
project is to mistakes around
“err != nil” and “return err”

- Properly review what
programmer productivity really
means

- Petition for an update to the
Tour of Go: promote
exceptions as a viable
alternative to error returns

How you can help

https://tour.golang.org/methods/19

Thank you
Work sponsored by

More reading

- The Go low-level calling convention on x86-64 (updated)
- Errors vs. exceptions in Go and C++ in 2020—Why and how exceptions are

still better for performance, even in Go

Tangentially related (shameless plug):

- Documentation for cockroachdb/errors

https://dr-knz.net/go-calling-convention-x86-64-2020.html
https://dr-knz.net/go-errors-vs-exceptions-2020.html
https://dr-knz.net/go-errors-vs-exceptions-2020.html
https://github.com/cockroachdb/errors/#cockroachdberrors-go-errors-with-network-portability

