
Assignment 3: Binary trees and Huffman coding

22-02-2017

Deadline: 03-03-2017 23:59

Objectives

You must implement a data (de)compressor and exercise your understanding of binary trees.

Requirements

Your deliverable must contain two programs encode and decode, behaving as detailed in the next
section.

You must submit your work as a tarball1. Next to the source code, your archive must contain
a text file file named “AUTHORS” containing your name and Student ID(s).

Behavior of the encoder and decoder programs

The encode program must:

∙ accept an optional command-line argument that specifies which tree it should use -- if this
argument is not specified, the encode program should decide a Huffman tree itself;

∙ read data to encode from its standard input; and

∙ produce on its standard output:

– on the first line, a representation of a Huffman tree it used, using the format docu-
mented for the print_tree function;

– starting from the 2nd line, the encoding of the input data in ASCII-coded binary, that is
using one full character "0" for binary 0 and one full character "1" for binary 1;

– at the end of the encoded data, the final marker character "." followed by a newline
character;

– on the last line of output: the number of characters from the input that were encoded,
the number of nodes in the Huffman tree, the number of binary digits in the encoded
output, and the compression ratio as percentage (rounded down).

1http://lmgtfy.com/?q=how+to+make+a+tarball

1

http://lmgtfy.com/?q=how+to+make+a+tarball

The decode program must read data from its standard input:

∙ on the first line, a representation of a Huffman tree using the same format as encode;

∙ starting from the 2nd line, the encoded input data in ASCII-coded binary, terminated by ".";

∙ the remainder of the input, if any, is silently discarded.

Then prints on its standard output the result of decoding the provided input using the pro-
vided tree.

Order of work (strongly suggested)

1. Implement the missing print_tree() function which represents its tree argument using RPN
notation:

∙ a single node tree with node value X is printed as X.

∙ the binary tree with two children X and Y is printed by printing X, then printing Y, then
printing ".".

For example this tree:

(root)
/ \
A / \

B C

Will be printed as: ABC..

And this tree:

(root)
/ \
/ \ C
A B

Will be printed as: AB.C.

You can test your print_tree() at this point by uncommenting the print_tree() call in decode.c

and running ./decode with any kind of input. This will use the fixed tree generated by
fixed_tree(). Verify that your output matches that tree.

2. Using the provided example Huffman tree in the code as constant tree input (ignoring the
command-line argument), complete:

∙ the definition of the code struct (you need to decide this yourself);

∙ the function compute_code_table() which translates a tree to a code table,

∙ the function print_code() which prints the encoded sequence of 0 and 1 character for
each input character.

2

This way, the provided encode program can use both your print_tree function from step 1 and
your algorithm in this step to produce a coded tree and a coded input valid for the provided
decode.ref program. You can then use decode.ref to check whether your work up to this point
is correct. The command echo "abca" | ./encode | ./decode.ref should print abca.

3. Again using the provided example Huffman tree as constant (ignoring the first line of input),
complete the main() function of decode to decompress input data using that tree.

You can then use your encode program from step 2 to check your newly minted decode pro-
gram.

4. Complete your decode program by implementing the missing load_tree function which reads
a tree definition created by print_tree and re-creates the corresponding tree. Hint: you may
want to use the generic stack implemented in stack.c.

Then you can use the provided encode.ref to check that your decode program can now han-
dle inputs with different trees. Check if the trees printed by encode.ref and decode match. The
command echo "xxyzzz" | ./encode.ref | ./decode should print xxyzzz.

5. Complete your encode program by writing the compute_tree() algorithm that creates an opti-
mal Huffman tree from the input, instead of using the provided example.

Grading

Your grade starts from 0, and the following tests determine your grade:

∙ +0,5pt if you have submitted an archive in the right format with an AUTHORS file.

∙ +0,5pt if your source code builds without errors and you have modified tree.c, encode.c or
decode.c in any way.

∙ +1pt if your print_tree function works.

∙ +2pt if your encode program works using only the provided example tree.

∙ +2pt if your decode program works using only the provided example tree.

∙ -1pt if valgrind reports errors while running your converter.

∙ -1pt if clang -W -Wall reports warnings when compiling your code

The following extra features will be tested to obtain higher grades, but only if you have ob-
tained a minimum of 5 points on the list above already:

∙ +1pt if your load_tree function works properly.

∙ +1pt if your decode program works using arbitrary Huffman trees provided as input.

∙ +2pt if your encode program constructs minimal Huffman trees for arbitrary inputs.

3

Overview of Huffman coding

Algorithm to encode the data:

1. Compute frequency table of input

2. Translate the frequency table to a tree - This is where the encode program in this assignment
also prints out the coding tree.

3. Translate the tree to an encoding table

4. Use the encoding table to encode the data - This is where the encode programs emits the
encoded output.

4

	Objectives
	Requirements
	Behavior of the encoder and decoder programs
	Order of work (strongly suggested)
	Grading
	Overview of Huffman coding

