
Strings, characters and character literals

Internally, computers only manipulate bits of data; every item of data input can be represented
as a number encoded in base 2. However, when it comes to processing text, mathematical equa-
tions on the numeric value of letters and punctuation are not very comfortable to write and use.

To optimize the manipulation of text, many programming language provide extra facilities
that help the programmer.

The two main constructs available are:

∙ a simple data type to represent a single character - a letter, digit, punctuation sign, etc.

∙ a more complex data type to represent a sequence of zero or more characters. This is called a
character string.

Character types

Character types are not strictly necessary – for example, Python does not have a dedicated char-
acter type, and programmers will use variables of type int to manipulate individual characters
instead.

However, dedicated character types are useful because they are more compact in memory: they oc-
cupy typically much less space (1-2 bytes) than an ordinary integer (4-8 bytes). So if a program
manipulates many characters it is more memory efficient to use the character type when it exists.
For example, Java even has two character types, called char and byte, much smaller than int that
is 32-bit long:

Data type Size Set of allowable values Adequate for
char 16 bits 0 to 65535 Processing international text
byte 8 bits -128 to 127 Processing binary files

Which type to use depends on the application: if text is to be read in or printed for human
users, usually char is adequate; whereas reading or writing character for use by another program
should probably use byte instead.

String types and Java’s String

Every language has a different way to manipulate sequences of zero or more characters. Some lan-
guages like C do not have a dedicated type for character strings, so a programmer has to “build
their own” using arrays of individual characters. In Java, like in Python and most modern lan-

1



guages, there is a dedicated type; in Java, the name for this is String.
Like numbers, strings can be read in (Scanner.next()) and printed out (PrintStream.println(),

.printf()) as-is. We can also express a string literal in the Java program using double quotes:

String a = "hello";

This frament creates a variable of type String and initializes it to store the sequence of charac-
ters ’h’, ’e’, ’l’, ’l’, ’o’.

Testing for String equality

Java’s direct equality comparison operators “==” and “!=” are only defined for primitive types. This
is why we can compare two int’s using “==” (int is a primitive type), however the direct comparison
operators do not work on compound types like String.

This is arguably a shortcoming of the Java language in particular: most other programming
languages do allow programmers to use == to compare character strings. So unfortunately you will
have to remembed this as an exception. It is especially unfortunate because Java does not inform you
properly if you make the mistake to use == to compare strings. For example, with the following code:

String a = "abc";
String b = "abc";
if (a == b)

out.println("all is well");

the program will not print “all is well” as expected, because “==” silently did something else
entirely.

The full explanation of what is going on here will come only later (when talking about refer-
ences and aliasing), so at this point just remember this: to compare strings, use the method equals(),
like this:

String a = "abc";
String b = "abc";
if (a.equals(b))

out.println("all is well");

This program fragment properly prints “all is well” as expected.

String and number conversions

Strings are not numbers, so we cannot perform numeric arithmetic on them:

String b = "123";

String c = b / 4; // produces an error: b is not a numeric variable

The only “arithmetic” operation available with Java’s String is “+”, which concatenates (at-
taches together) two strings:

String b = "123";
String c = b + b;

out.println(c); // prints 123123

2



To convert a String to a number (int, double, etc.) you can use the Scanner, already seen pre-
viously. To perform the opposite conversion (from int, double, etc. to String), String provides a
service called valueOf:

String d = String.valueOf(3.1415); // d = "3.1415"
String e = d + d;

out.println(e); // prints 3.14153.1415

Useful String methods

The type String provides numerous services that help with the use of character strings in pro-
grams. A complete list is provided in the online documentation of the Java language, so you look
up String there every time you are looking for a string-related language feature.

However it may be useful to “pre-load” the following knowledge in your long-term memory:

∙ a.equals(b) compares two strings a and b for equality (replaces “==”);

∙ a.compareTo(b) compares two strings a and b for alphabetical order (replaces “<” and “>”)

∙ a.length() returns the length of the string a, ie the number of character it contains;

∙ a.charAt(i) retrieves the character in the string a at position i;

∙ a.substring(i, j) returns the part of the string that begins at position i and ends at position
j, as a new string;

∙ a.indexOf(c) returns the position of the first occurrence of the character c in a.

Also even if you do not need to remember the specifics by heart, you should remember that
String provides other services that help with handling international text, in particular comparison
while ignoring the difference between lower and upper case, case conversion, etc.

Literals, character names and escape sequences

A literal is a construct in a programming language whose value is equal to what it represents.
For example, the text “123” formed by 3 digits ’1’, ’2’, ’3’ concatenated together is a valid integer
literal, whose value is equal to a hundred and twenty three.

In every programming language, there are some values which can be represented by multiple different
literals. For example, The approximate value represented by the literal “3.1415” is also represented
by “31.415e-1” (31.415× 10−1 = 3.1415).

Characters in particular typically have many names in programming languages. For example,
the following 3 literals all encode the same value in Java:

’a’
’\x61’
’\u0061’
’\141’

3



The first form is the most simple, this this the character itself.
The other three forms are other encoding that start with a backslash (“\”) followed by a code.

The presence of the backslash indicates that what follows must be interpreted differently. A con-
struct of this form is called a character escape sequence.

The reason why these special forms with a backslash are useful is that some characters cannot
be easily entered in a text editor. For example, what if I wanted to check whether a string starts
with the Greek character alpha? In most environments I cannot type it in the source code because
special characters are not allowed in the text editor, or not saved properly. In order to work around
this shortcoming, I can use the character code instead:

final char GREEK_ALPHA = ’\u0251’;

if (a.charAt(0) == GREEK_ALPHA) ...

Java, like C, Python and many other programming languages recognizes the following escape
sequences:

Sequence Meaning Example Same as (examples)
\uNNNN Unicode character with code

NNNN
’\u0061’ ’a’

\xNN Character with hexadecimal
code NN

’\x61’ ’a’

\NNN Character with octal code NNN ’\141’ ’a’

\’ The apostrophe character ’\x27’, ’\047’, ’\u0027’
\" The double quote character ’\x22’, ’\042’, ’\u0022’
\\ The character “\” itself ’\x5c’, ’\134’, ’\u005c’
\n The newline character ’\x0a’, ’\012’, ’\u000a’
\t The tab character ’\x09’, ’\011’, ’\u0009’
\r The carriage return character ’\x0d’, ’\015’, ’\u000d’
\f The form feed (new page) char-

acter
’\x0c’, ’\014’, ’\u000c’

To summarize, if a character can be entered as-is in the program text, use that directly; otherwise, use
a character escape sequence.

Important concepts

∙ character type and string type and the difference between them;

∙ dedicated character types are more compact in memory than other integer types;

∙ testing for equality using equals(), do not use “==”;

∙ conversion between String and numbers in Java using Scanner and String.valueOf();

∙ String’s charAt, compareTo, length, substring and indexOf methods;

∙ character literals;

4



∙ character escape sequences.

Further reading

∙ Think Java, sections 8.1-8.6 (pp. 91-96)

∙ Introduction to Programming, sections 2.2.3-2.2.4 (pp. 26-28), section 2.3.3 (pp. 34-35)

∙ Absolute Java, section 1.3 (pp. 33-45)

∙ WikiBooks: Programmeren in Java, Stringbewerkingen

Copyright and licensing

Copyright c○ 2014, Raphael ‘kena’ Poss. Permission is granted to distribute, reuse and modify
this document according to the terms of the Creative Commons Attribution-ShareAlike 4.0 In-
ternational License. To view a copy of this license, visit http://creativecommons.org/licenses/
by-sa/4.0/.

5

https://nl.wikibooks.org/wiki/Programmeren_in_Java/Stringbewerkingen
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

	Character types
	String types and Java's String
	Testing for String equality
	String and number conversions
	Useful String methods

	Literals, character names and escape sequences
	Important concepts
	Further reading
	Copyright and licensing

