
FP7-215216

Architecture Paradigms and Programming Languages for Efficient programming
of multiple COREs

Specific Targeted Research Project (STReP) THEME ICT-1-3.4

Report on Porting Operating System to

SVP/Microgrid Platform

Deliverable D5.3, Issue 1.0

Workpackage WP5

Author(s): M.A. Hicks, R. Poss, C. Jesshope, M.W. van Tol, M. Lankamp
Reviewer(s): M.A. Hicks, R. Poss, C. Jesshope, M.W. van Tol, M. Lankamp
WP/Task No.: WP5 Number of pages: 81
Issue date: 2010-09-30 Dissemination level: Public

Purpose: The purpose of this deliverable is to describe the work carried out, and progress
made, on the porting of operating system support to the SVP/Microgrid platform.
Results: The main results of this deliverable are to be found in the investigation and implemen-
tation in four key areas: resource management/scheduling, where a fully-fledged resource alloca-
tor is implemented; I/O, where both a novel operating system stack and Microgrid hardware I/O
Cores are implemented (in µTC and emulation); a deadlock prevention scheme, implemented as
an adjunct to the SL toolchain; monitoring support, to quantify over time both the behaviour
of individual programs and their impact on the overall architecture; and additional application
library support.
Conclusion: Key issues have been identified and resolved in the following areas: architecture
support for scalable I/O; space allocation of cores for software components; space allocation
of memory for heap and stack management; concurrency monitoring; library compatibility for
legacy program code. In particular for I/O, a bespoke, decentralised operating stack is imple-
mented in µTC and special, reduced complexity, I/O cores are implemented in the Microgrid
to facilitate highly parallel and scalable device I/O. This is provided via a standard interface to
client applications. Also, the issue of deadlock prevention which was raised during the initial
phases of the project has been resolved through a co-design of a hardware-directed software
prevention scheme.

Approved by the project coordinator: Yes Date of delivery to the EC: 2010-09-30

Document history

When Who Comments
2010/08/24 M.A. Hicks Initial Outline
2010/08/31 M.A. Hicks Added Initial Draft on I/O
2010/09/03 R.C Poss Added Initial Draft on Monitoring
2010/09/03 R.C Poss Added Initial Draft on Resource Allocation
2010/09/06 C.R. Jesshope Added Initial Draft Overview

(via M.A. Hicks)
2010/09/07 M. Lankamp Added Initial Draft on Deadlock Prevention
2010/09/07 M.A. Hicks Added Notes SL5,7,8 & SVP21,31 as Appendices
2010/09/08 M.A. Hicks Added ‘at-a-glance’ Section to Overview
2010/09/10 M.A. Hicks Initial First Full Draft
2010/09/15 All Authors Feedback from First-draft
2010/09/29 All Authors Final Version

Project co-funded by the European Commission within the
7th Framework Programme (2007-11).

Table of Contents

1 Overview 1
1.1 Introduction and Motivation . 1
1.2 An OS strategy . 2

1.2.1 Space vs Time . 3
1.2.2 Processes vs. Threads . 3
1.2.3 To Preempt or not to Preempt . 4

1.3 Deliverable 5.3 ‘at-a-glance’ . 5

2 Resource management 6
2.1 Spacial on-chip resource management . 6
2.2 Thread and family context management . 7

2.2.1 Thread local storage . 7
2.3 Memory storage . 8
2.4 I/O Channels and other devices . 8
2.5 Summary . 8

3 Monitoring 9
3.1 Introduction . 9
3.2 Synchronous in-program monitoring . 9

3.2.1 Low-level support for performance counters 10
3.2.2 Software-hardware interface . 12

3.3 Asynchronous architectural monitoring . 12
3.4 Summary . 14

4 Input/Output in SVP and Microgrids 15
4.1 Overview . 15

4.1.1 Motivation . 15
4.1.2 Context of I/O Work . 15
4.1.3 Related Work . 15
4.1.4 Key Areas of the Work . 16

4.2 I/O Operating System Stack . 17
4.2.1 µTC I/O API . 17
4.2.2 I/O Model (Synchronous and Asynchronous) 18
4.2.3 Low-Level Drivers . 20
4.2.4 I/O Places . 20
4.2.5 Parallel I/O . 20

4.3 Microgrid I/O Implementation . 20
4.3.1 I/O Cores . 21
4.3.2 High-Speed Bus . 21
4.3.3 Bus Interface . 22
4.3.4 Device Communication and Interrupt Handling 22
4.3.5 Synchronising and Interrupts . 23
4.3.6 Memory Interface . 23

4.4 Summary . 23
4.4.1 Performance Results . 24
4.4.2 Milestones . 27
4.4.3 Future Work . 27

5 Cooperative Deadlock-Prevention 28
5.1 Problem Description . 28
5.2 Sequentializing . 28
5.3 Registers . 29
5.4 Group creates . 29
5.5 Delegated creates . 29
5.6 Exclusive creates . 29
5.7 Hardware extensions . 30
5.8 Summary . 30

6 Report Summary 31

Appendices 33

A SL Library: dynamic place allocation (TR) 34

B Asynchronous simulation monitoring (TR) 39

C SL Library: performance counters (TR) 46

D Generalized I/O events for the Microgrid (TR) 52

E Towards a Microgrid Hardware I/O Mechanism (TR) 58

F Efficient heap allocation on shared memory SVP (TR) 63

G Simple Example SL Program Utilising I/O API 74

H SL Standard Library (TR) 75

1

1 Overview

1.1 Introduction and Motivation

There is still hesitancy in the semiconductor industry in embracing large scale concurrency in micro-
processor design. This is especially true in mainstream computing, where we still have processors
with a relatively small number of complex cores. However, in other domains, e.g. gaming and
graphics engine, there is a clear benefit shown from the use of a larger numbers of simpler cores.
The clear distinction in usage is that the former comprises a complete system that must provide
a whole range of system services whereas the latter are accelerators that execute a single task at
a time relying on a host to provide whatever system services are required. In Apple-CORE we
view these as two extremes of use and our operating system development aims to bridge this divide
with a coherent strategy. What is required is a strategy that embraces execution model kernel,
resource management, security and other system services that make up a commodity system. Cou-
pled with this, there is a growing motivation for energy-efficient computation, which is one of the
key advantages of going to larger numbers of simpler cores. This report outlines the issues in mak-
ing many-core chips into general purpose computing devices and reports on the developments that
have been achieved in the Apple-CORE project. In the original project DoW we had anticipated
a complete port of a Unix-like kernel onto the SVP core. This was later modified in [3] to adopt
a progressive strategy that would rely initially on a host system for system services, which would
gradually be migrated onto the Microgrid itself.

It should be emphasised that the strategy we have developed in Apple-CORE is applicable to a
wide variety of many-core processor designs in addition to the Microgrid. In the future, we are likely
to see general-purpose processors comprising much larger numbers of cores, this is inevitable. By
the end of silicon scaling we could certainly see 1,000s perhaps even 100,000s of cores in a system.
These core are likely to be heterogeneous, i.e. fat cores, clusters of thin cores of various sizes,
integer cores, floating point cores, special purpose cores, reconfigurable hardware, etc., each with
different time scales for managing concurrency, i.e. concurrency creation latency, computational
throughput, synchronisation latency, communication throughput, etc. These systems will face the
same problems of resource contention and allocation and the provision of reliable and secure services
in a distributed environment.

With so many cores and in a general purpose environment there will be too much dynamism
to map computations statically, the mapping process for a given task will have to compete with
existing jobs that have already acquired resources but we still need map any new task to the
most appropriate type of resource in order to meet any requirements such as latency, frequency or
throughput as well keep within (physically constrained) power budgets. Given a mapping onto a set
of resources, we expect code to have too much parallelism to schedule manually. This means that
units of work must be scheduled fairly and efficiently in such a way that, for any set of resources,
we can guarantee freedom from deadlock. We already have this property in SVP given sufficient
resources (i.e. freedom from communication deadlock) and this property needs to be extended to
guarantee freedom from deadlock where unbounded concurrency (with dependencies) is mapped to
a finite set of resources.

If mapping to resources is dynamic, then for heterogeneous resources, code can not be specialised
manually. Automatic specialisation is required for granularity control in order to amortise concur-
rency management latencies and also for managing deadlock. This will involve collapsing some of
the concurrency exposed in order to meet the constraints imposed by the selected resources or may
even require binary code transformation, e.g. mapping from a regular ISA to a function imple-
mented in logic. In the SVP core, the same binary code can run in a singe thread slot on a single
core or may be distributed to many cores each providing many threads. The core automatically
supports the necessary reduction in concurrency in breadth (i.e. threads within a family) but com-
piler support is also needed for depth of concurrency in our hierarchical model. Again, we do not
see these techniques as being limited to cores where the SVP computational model is built into the
implementation of the ISA. In implementations of SVP on different cores the concurrency overheads

2 1 OVERVIEW

are likely to be larger and new techniques required for code transformation. Complimentary work is
already being undertaken to implement efficient software SVP kernels and to provide a framework
for code specialisation [24].

1.2 An OS strategy

To start this section we review recent activity in both industry and the research community. In
March this year, Dave Probert, a Microsoft kernel engineer, gave a talk at the University of Illinois
(http://www.upcrc.illinois.edu/seminars.html) entitled Beyond Kernels: On the Future of
Operating Systems. In this talk he spoke about the desire for responsiveness and questioned the
way current operating systems shares processor cores between multiple applications. He suggested
that with many cores, it makes more sense for cores to be be dedicated to particular processes, with
the OS acting more as a hypervisor, i.e. assigning work to cores an allowing the cores to get on with
it. He also said that this approach was not supported across the board in his team. This approach,
however, is at the core of the Apple-CORE strategy.

As another data point in this trend, Apple recently introduced the technology Grand Central
Dispatch1 in their flag operating system Mac OS X. This implements task parallelism based on
transparent (system-managed) thread pooling. Using this framework, developers are invited to
describe fine grained, asynchronous units of work in a way independent of hardware properties;
the system then automatically dispatches tasks over a multicore execution engine. In order to
achieve this, Apple introduced language extensions to their C/C++/ObjC tool chain that simplify
the expression of concurrency and push programmers to isolate asynchrony and dependencies in
their code. The Apple-CORE strategy is similar to GCD in that it introduces language extensions
as a vessel to express target-neutral concurrency, while the environment takes responsibility for
spreading tasks to hardware automatically.

In general, this approach is more common in the grid community, where it is common for jobs to
be allocated sets of processors for a given task; it is also common for each processor resources to come
with a complete time sharing operating system. The ExtremeOS European projects is developing
Linux to support such grid applications. ”The overall objective of the XtreemOS project is the
design, implementation, evaluation and distribution of an open source Grid operating system? The
approach we propose is to build a Grid OS based on the existing general purpose OS Linux.” In
the grid world jobs are large and may run for days, the emphasis in this project therefore is more
on the support for virtual environments rather than the efficient execution of small jobs [2].

Another approach to the development of operating systems is the Barrelfish project2, which
is a joint project between ETH Zurich and Microsoft Research Cambridge. An interesting recent
paper from this project looks at the design principles in creating an operating system for future
many-core heterogeneous systems [1]. In particular it looks at scheduling. In their strategy they
conclude that time multiplexing of cores will still be necessary, implying that resource management
cannot solely operate by partitioning the resources of a machine at the point when a new application
starts, which in their setting means operating system intervention. However, they do not consider
jobs as being highly threaded and able to self-schedule themselves on available resources. Another
interesting observation is that scheduling must be managed at multiple time granularities, which
implies identifying units of work at different granularities.

The holistic approach adopted in Apple-CORE takes all of these issues on-board but does so
without introducing complex scheduling algorithms. Indeed this would be counter productive, as
with hardware support for the kernel, we have shown it is possible to allocate a cluster of 64 cores,
create and execute 4K threads (Livermore Kernel 7) on them, synchronise on the completion and
to do all of this within less than 4,000 cycles. Moreover, the average utilisation on all cores during
this process is a 60% usage of all pipeline cycles. This does not allow much time for executing a
scheduling algorithm.

In the remainder of this section we outline the strategy for the Apple-CORE approach
1http://images.apple.com/macosx/technology/docs/GrandCentral_TB_brief_20090903.pdf
2http://www.barrelfish.org/

http://www.upcrc.illinois.edu/seminars.html
http://images.apple.com/macosx/technology/docs/GrandCentral_TB_brief_20090903.pdf
http://www.barrelfish.org/

1.2 An OS strategy 3

1.2.1 Space vs Time

One of the key issues discussed in the background above is the issue of scheduling jobs or tasks.
A strategy for scheduling is dependent on the availability of different resources in the system. If
we look far enough back we come to an era where both compute cycles and memory were in short
supply. This was the era of batch processing system, where one, in some cases a few jobs, were
scheduled manually onto the single CPU or core. Computer systems for the last few decades on the
other hand can be characterised by a surfeit of memory but but where compute cycles have still been
a limiting factor, this led to the time sharing operating systems becoming widespread. Here, large
numbers of jobs reside in memory and compete for CPU cycles. The progression from cooperative
to preemptive scheduling allowed the prioritisation between different jobs to be managed by the
operating system rather than collaboratively. Again the landscape has changed (is changing) and
we are moving into an era where there will be a surfeit of both memory and CPU cycles. The
constraints are going to be in how we use those cycles as, in these many-core systems, energy and
communication bandwidth are going to be limiting factors. In this respect, the time sharing OS is
no longer fit for purpose, as it is not energy efficient. It requires moving state into and out of the
CPU as contexts are switched, consuming both energy and bandwidth unnecessarily.

In SVP we have a single composition mechanism from fine-grain threads to complete systems.
The key support for the OS kernel in this composition is the ability to schedule a unit of work to
specific place (a guaranteed set of resources) at any level of the composition, giving very efficient
mechanism to implement space sharing. The strategy we adopt in SVP is to allocate resources for
exclusive use of a thread, hence the ability to guarantee resources. This may be constrained by
contract in energy and/or duration. The important issue is that there is a static guarantee of the
resources allocated, which may be used at compilation time, e.g. to statically guarantee freedom
from resource deadlock. In the case of the Microgrid we allocate one or more cores in a cluster.
Each core provides a fixed number of families and threads and depending on the code’s requirement
for registers a fixed number of synchronising contexts.

On a single core we must still implement time sharing between the threads and this is imple-
mented at a very fine grain in hardware. No thread may execute for more than one cache line’s
worth of instructions before yielding to another thread. The time slice is thus from 1 to 16 ns for a
1GHz clock and slices are allocated using the simplest round-robin algorithm amongst all threads
that are able to proceed. This scheduling is starvation free but is considered undesirable if the sizes
of the jobs or tasks vary significantly. However, in our strategy we will manage job size through
resource partitioning and prioritisation by the size of partition allocated to a job. Thus, we see no
reason to prioritise threads on a single core.

There are some exceptions to the strategy of allocating complete cores to jobs. For example
legacy code and high level control threads in an application may be allocated exclusive use of a
single thread on a core. However, the exclusivity of use for that resource can only be guaranteed
if the thread does not create any further threads (legacy code) or only creates threads on other
resources that have been allocated (control thread). It does not matter so much if a processor
allocated a number of control threads is idle for any length of time, so long as it is not consuming
power. It is a repository of synchronising state. With SVP implemented in the ISA of the core,
we have a kernel that implements time-sharing between a fixed number of threads with a time
slice of a few nanoseconds and a delegation mechanism that can schedule work to remote resources
efficiently with time slices from a few microseconds upwards. For comparison, in Linux, a time-slice
is between 5-100ms, depending on its niceness. A very nice process (19) gets just 5ms of CPU
time before being interrupted. Therefore the microgrid can time-slice some six orders of magnitude
more responsively than Linux and even space-slice three orders of magnitude more responsively
than Linux can time-slice.

1.2.2 Processes vs. Threads

We have already seen that in SVP we have a common composition mechanism from threads to
complete jobs, they are all SVP threads. Because of this we need a strategy to manage issues that

4 1 OVERVIEW

normal operating systems deal with by a partition of the units of work, namely between processes
and threads. Perhaps the major issue is in memory protection. Most operating systems combine
memory mapping and protection by the use of this partition. Processes are heavyweight units of
work that have their own unique mapping from virtual to physical address, whereas threads are
lightweight units of work that exist within a process. It is because mapping and protection are
intimately connected that we have this partition, limiting protection to coarse-grain units of work.
The result being that protection is coarse grained. The solution is to separate these concerns of
mapping and protection, which allows protection at any level of granularity. This would support
the SVP model where there is a common composition mechanism across granularities. There are
many advantages to this approach as outlined in [32]. The major advantage is in optimising system
services by avoiding the copying of data between address spaces [19], for example between OS and
user spaces in issues such as networking and I/O. In the Microgrid our strategy is to use a single
address space on chip and to overlay this with a fine grain memory protection based on protection
domains. Prior research that has influenced our strategy has been undertaken in both coarse grain
single-address space operating systems (SASOS) such as Mungi [11] and in fine-grain conventional
systems such as Mondrian [32]. Our work in this area has already been reported in an earlier
deliverable [21].

1.2.3 To Preempt or not to Preempt

A final plank in the strategy for an SVP operating system is to answer the question whether we
need support for preemption. There are three main reasons for using preemption in an operating
system and we have a strategy to deal with each of these. The first are hardware exceptions
such as arithmetic anomalies and protection violations. For these we need to support an exception
mechanism in the processor. Prior research was undertaken in the design of an exception mechanism
for the SVP core [30] and in the current software emulation it does not make sense to implement
this, as it would only slow down the processing rate of the emulator and can be managed by the
underlying system. Of the solutions outlined in [30] our preference is for the simplest solution, which
reserves a single thread context for executing an exception. During exception processing, which is
not the common case, we accept a relatively inefficient single thread execution mode. This is the
only form of preemption required in the core. On encountering an exception, the pipeline is flushed
and switches to exception processing mode. Normal execution continues when the exception has
been handled.

The second reason for normally requiring preemption is to manage signals between different
parts of the system. This occurs when synchronisation and/or communication is required between
unrelated parts of the system [23]. I/O is a classical example. In the SVP core we have a built-in
mechanism for signalling, which is the synchronisation on writing a register or on family termina-
tion (which writes a register in the parent thread) and we have proposed both asynchronous and
synchronous methods to use this at a system level, i.e. between unrelated concurrency trees [30, 23],
which have been used to build I/O into the Microgrid [22, 12, 13].

The final reason for preemption is for managing scheduling, where a timer interrupt can allocate
processor cycles in different quanta according to priority and niceness. As described in subsub-
section 1.2.1, we have no need for preemption within a single core due to the fine-grain time-slice
built into the hardware. There could however be a requirement for preemption in space-sharing
resources. Without any form of preemption, we rely of cooperation in order to relinquish resources.
A strategy to move away from this reliance on cooperation lies in the resource allocation itself.
When a resource is allocated, it is possible to make a contract for the use of that resource, with
a given time or energy budget. Then when that contract has expired the system can preempt the
resources using one of two mechanisms. The softest is to reset the capability the thread has to
create threads on that resource and wait for the job to terminate or alternatively the system can
kill all threads at a place and reset it for further use.

1.3 Deliverable 5.3 ‘at-a-glance’ 5

1.3 Deliverable 5.3 ‘at-a-glance’

Table 1: Deliverable ‘Checklist’ (at month 33)

Milestone Details Due Status Addressed in...
D5.3 Port of operating system onto

emulation platform
m33 ∞ §1.2

M5.3.1 Investigate and chose micro-
kernel base for OS port

m18 A §1.2

� N1 Resource Management m33 2� §2; App. A & F
� N2 Monitoring m33 2� §3; App. B
� N3 Cooperative Deadlock Pre-

vention
m33 2� §5

M5.3.2a OS accelerator model m24 2� §4, 4.4.2; App. G
M5.3.2b OS I/O bridge model m30 2� §4, 4.4.2
M5.3.2c OS autonomous model m39 2 §4.4.2
M5.3.3 Investigate I/O support in mi-

crothreaded processors
m17 2� §4; App. E & D

M5.3.4 Port I/O support to µTC m22 2� §4.2, 4.2.1
� N4 General OS Library Support – 2� App. G
M5.2.2 Integrate memory protection

into processor emulator
m30 2 [21] & §1.3

Key: ∞→ continual process, � → new goal, A → goal modified, 2� → completed, 2 → on-going

From the outset of the operating system work on the Apple-Core Project, the goals were nec-
essarily fluid in nature. Table 1 summarises the work carried out, up to month thirty-three, in the
domain of Work Package 5. The novel programming model and architecture being used have meant
that the original milestones for this area of the project have, in many cases, been modified and/or
redirected into new areas. This can be seen particularly with the addition of N1, N2 and N3 which
were necessary objectives for the progression of the operating system infrastructure and in order to
support work in other areas of the project.

Milestone M5.2.2, shown in grey in Table 1, is one other noteworthy modification to the operating
system strategy. The previous Apple-Core deliverable ([21]) presented an in-depth description of the
mechanics of memory protection in the Microgrid processor. Since this mechanism was devised and
documented, it has been recognised that, within the scope of the project, to aid the progress of more
fruitful areas, an emulated implementation of the memory protection scheme would not currently be
necessary. This is largely due to the limited benefits that such emulation would bring; current, and
indeed future, Microgrid applications do not require security of memory between applications. It is
the intention of the researchers that memory protection will be implemented in the simulator, but
at a stage when this is useful in terms of research, i.e. when the applications and operating system
implementation are at a sufficient level of maturity to benefit from such a protection scheme.

6 2 RESOURCE MANAGEMENT

2 Resource management

In a concurrent setting, resource management is both the partitioning of resources according to
requirements, and the arbitration of access by concurrent processes. Besides the “usual” resources
that need management, that is storage (disk and memory) and I/O channels, the following are
relevant in a highly dynamic, concurrent environment:

• cores and clusters of cores,

• execution contexts for threads and families of threads, including the management of thread
local memory.

We cover these aspects in the following subsections.

2.1 Spacial on-chip resource management

In the Apple-CORE architecture the execution resource visible to programs is the cluster, not the
core. The cluster including all the co-processor and the on-chip interconnect is captured behind a
single abstraction called the SVP place. Programs perform requests for allocation and deallocation
of places based on computational requirements.

The overall intended interaction between programs and places is described in a previous publi-
cation [18].

The protocol proposed in this paper is defined hierarchically. At each level it defines an entity
called a SEP, running on a specific site (i.e. core) at the local cluster. By placing the SEP at a
specific site one ensures exclusion of access to its state (all requests go through the same core) and
locality of state between different requests. Then programs make requests to the SEP for resources
suitable to execute a named component, and the SEP “contracts” with the available resources the
one that best matches the requests.

The intention of this framework is to recompute resource allocations in a fine-grained manner for
each invocation of a resource kernel, possibly many times during a large computation that reuses the
same kernel across multiple inputs in order to maximize the dynamicity of the system and minimize
over-subscription of resources.

To achieve this in Apple-CORE we have implemented a lightweight SEP for clusters of cores on
the Microgrid. We did not implement the “bidding” and “contracting” phases of the initial protocol
specification since the homogeneity of the Microgrid allows to keep the knowledge about utilization
in the SEP directly. Instead, the SEP thus controls the allocation state, by pooling identifiers for the
available clusters at its level and performing best-fit allocations to satisfy requests from programs,
which can specify their requests with either min, max or exact boundaries on the number of cores.

Details about the software interface are documented in CSA note [sl7] (attached as Appendix A).
The SEP delivers the following information to programs:

• the actual number of cores in the allocated places,

• a place ID suitable to assign work by a create operation,

• architectural parameters like the number of family/thread entries per core.

During benchmarking, the following figures were extracted:

• Requests for place allocations are satisfied in a time logarithmic with the number of clusters
managed at this level of SEP; less than 400 processor cycles per request with 8 different
clusters (min 150 cycles, average 250);

• Requests for place deallocations are satisfied in constant time, less than 200 cycles per request
(min 100 cycles, average 150).

These low latencies confirm that this implementation is suitable for a high-rate, fine grained
space scheduling (millions of allocations cycles per second on a GHz-clocked chip).

2.2 Thread and family context management 7

2.2 Thread and family context management

Contrary to most software implementations, our architecture handles concurrency management in
hardware. Both logical threads, families and their corresponding state are allocated, scheduled and
freed using hardware processes on chip. As such, many aspects of a thread’s execution context are
allocated in dedicated memory structures in the cores instead of shared memory:

• the architectural register window is allocated per thread as a range of contiguous registers in
a large register file (up to 32 registers per thread in a 1K register file);

• the instruction pointer, thread index, and other thread-specific constants are stored in a thread
entry in a thread table (256 thread entries per core in the current configuration);

• the family termination status, index range, parent thread ID, initial program counter for all
threads and and other family-specific constants are stored in a family entry in a family table
(32 family entries per core in the current configuration).

The allocation of registers, as well as thread and family entries in the cores is entirely performed
by the thread and family allocation/deallocation hardware processes, invoked as a results of the
execution of the ISA extensions by the pipeline. They are all running asynchronously with the
core’s pipeline, and thus are long latency operations from the program’s perspective.

These hardware aspects of concurrency resource management have been implemented mostly in
the context of the previous project NWO Microgrids. However, in the context of Apple-CORE the
following extensions have been designed and implemented:

• thread local storage in shared memory. Except in small data-parallel computation kernels or
lightweight helper threads in complex algorithms, all of a thread’s state rarely fits in the 32
architectural registers made available by the core’s ISA. Spilling of intermediate results to
memory is thus required in some fashion. To support this we have implemented automatic
allocation of regions of the shared address space to each thread at an extremely low overhead,
suitable for high-rate thread creation and termination. This is described below.

• allocation feedback on resource exhaustion. Since our system does not implement virtual-
ization of concurrency contexts, there is a fixed upper bound on the concurrency resources
that can be allocated by programs, possibly lower than the maximum concurrency expressed
in algorithms. In other words programs may express the creation of more families threads
than can be allocated on a given chip configuration. In order to prevent deadlock due to re-
source starvation, the thread allocation/creation process has been extended to report a status
to programs when exhaustion occurs. This status can be used for deadlock prevention, as
documented in section 5 of this report.

These two new features, combined with the hardware concurrency management previously avail-
able, form the low-level concurrency resource management of the Apple-CORE hardware operating
system.

2.2.1 Thread local storage

In order to provide low-latency thread local storage, we have designed the following subsystem:

• the shared memory address space on chip is statically partitioned among all cores and thread
contexts. With a 64-bit address space, this yields 65TB of usable address space per thread
with security disabled, or 2GB of usable address space with security enabled;

• the cache protocol is modified to create cache lines on demand whenever a thread first accesses
addresses in memory that corresponds to its own thread region in the address space. When
a thread terminates, an invalidation message is broadcast for its own range of addresses that
flushes all corresponding cache lines from the COMA network.

8 2 RESOURCE MANAGEMENT

• only when the total thread-local storage requirement from all threads exceeds the capacity of
the on-chip COMA network, are TLS cache lines spilled to external memory. At this point a
dedicated MMU at the chip boundary is in charge of allocating storage in the external chip
and mapping it virtually at the addresses required by the TLS cache lines.

Because the address space is statically partitioned and we assume power of two alignments of
the various values involved in the partitioning, a base pointer to each thread’s TLS can be readily
computed from the core and thread ID by a small dedicated shift unit on the core’s ALU. This way,
this base pointer can be requested by each thread within one pipeline cycle.

In the compiler from our intermediate language µTC/SL, the TLS is then used as a usual stack
frame for spilling registers and allocating “local” memory objects in each thread.

2.3 Memory storage

For the purpose of software global heap management, the external memory storage is managed
using a two-level strategy:

• for small objects (under 256 or 512 bytes), an efficient, lock-less massively distributed concur-
rent heap allocation strategy is used;

• for larger objects, a hierarchy of shared global heap managers based on “traditional” algo-
rithms is used.

The first allocation manager is new work contributed by Apple-CORE. It is currently detailed in
CSA note [svp34], attached as Appendix F, and is the topic of a future publication. This protocol
effectively allows lock-less, low-overhead completely concurrent heap allocation and deallocation
from different threads. This small-object allocator is warranted due to the observation that most
dynamically allocated objects (in number) are 256 bytes or smaller (2-4 words on average when
compiling from functional languages); and that they commonly have very short lifetimes and are
created/deleted highly dynamically and concurrently.

The second allocation manager used for larger objects is pool-based and can be configured in
software. We currently use the public domain DLmalloc [20] implementation.

2.4 I/O Channels and other devices

This is expounded upon in section 4 of this report.

2.5 Summary

During this phase of this project we have focused on the key aspects of resource management on
highly concurrent platforms: space scheduling over cores, and memory management. Through novel
management schemes, we are able to provide low-overhead, low-latency fine-grained and scalable
allocation of cores and memory to software components up to individual threads.

The aspects of I/O channel management are discussed later in this document.

9

3 Monitoring

This section describes support and findings about run-time monitoring in our on-chip highly con-
current architecture.

3.1 Introduction

We define monitoring as the action of observing the execution of programs without interference on
their execution, for the purpose of extracting metrics and analyzing their behavior. More specifically
in the context of Apple-CORE the following requirements have been recognized:

• profiling of program sections. This is the type of monitoring required e.g. to observe the
performance of benchmark programs for the purpose of comparing different software imple-
mentations against each other.

This requires us to observe different metrics in programs, from the point a program starts to the
point a program terminates, and independently from other simultaneously running programs.
Different parts in the execution of a program may need to be isolated with certainty, e.g. the
initial data input, the final data output, and different iterations of a compute kernel.

Also, when executing in accelerator mode or in the “slave” mode, care must be taken also
to separate the work related to the initialization of the Microgrid from the effective program
work.

Because these various execution phases are defined by the structure of the software, there must
exist some link between the input language(s), tool chain, and monitoring infrastructure.

We call this type of monitoring Synchronous in-program monitoring.

• profiling of overall architectural performance. This is the type of monitoring required e.g. to
observe the overall behavior of the hardware (utilization, load on interconnects, etc) under
different software loads.

This requires us to observe hardware metrics in a way that encompasses the current mapping
of programs onto the architecture, i.e. including when different software components are
sharing the same hardware, etc.

We call this type of monitoring Asynchronous architectural monitoring.

To satisfy these two sets of requirements, we have designed principles and an infrastructure that
is now integrated into our framework. They are described more technically in 3.2 and 3.3 below.

At this point we highlight that although these two sets of requirements appear orthogonal, they
should be (and are already) used in conjunction. For example, when running a single program
on the architecture, architectural monitoring produces an accurate picture of the effect of that
specific program on the hardware. More importantly, by observing the overall load of one or more
software component(s) on the specific sub-sets of the architecture onto which they are mapped, and
correlating these results to the in-program measurements, one can deduce optimization parameters
for future mapping decisions. We first suggested this idea in a recent publication [4] and then
expounded the topic in a presentation [26] at the HPPC workshop at Euro-Par 2010.

In Apple-CORE, synchronous in-program monitoring is already used extensively by WP2 and
integrated into Unibench. More information about this can be found in the WP2 report.

3.2 Synchronous in-program monitoring

For this type of monitoring we have designed and implemented a subsystem architecture as follows:

1. on every resource (core, cluster, cache), the concurrency run-time system allocates a region
in the memory address space and ensures that these memory locations are asynchronously
updated to reflect the current values of monitoring counters in the underlying resource. The

10 3 MONITORING

different counters include the cycle counter (for cores), individual (per core) and collective
(cluster-wide) number of instructions executed, cache hits and misses, etc.;

2. the software stack defines and exposes a set of named pointers to these locations;

3. a software library is defined that contains services to:

• copy the current values of a set of counters to another (temporary) location in memory;
this is a sampling operation guaranteed to be side-effect free and to have an extremely
low latency (a few cycles);

• compute differentials between two samples that reflect the combined/average program
behavior between the two sampling points;

• report samples and differentials in a form amenable for further processing after the pro-
gram has terminated.

We recognize a high similarity between this approach and the use of hardware performance
counters in traditional architectures. There is sufficient similarity that the software API at point 3
could be made largely compatible with existing software using PAPI [6, 9] or PCL [5]. We chose
however a simpler interface and to focus on the key aspects of the Apple-CORE project not usually
considered by previous work: analysis of fine-grained concurrent behavior in programs.

This subsystem is intended to be used as follows: when designing a benchmark program, the
program implementer is invited to insert calls to the software API to take samples at the start and
end points of “interesting” sections in the program code. Then at some other point in the program
code after the interesting sections are known to have finished executing, calls to report the values are
inserted. By naming the sections with distinct (text) identifiers, the report can be then correlated
back easily to the program sections.

By making each program responsible for its own monitoring (as opposed to e.g. report program
events as an asynchronous execution trace and collect the trace afterward), we are able to encap-
sulate the monitoring state of a program instance using its own memory space. This is a simple
abstraction that allows us to isolate easily the measurements taken by many instances of the same
program running concurrently on different part of the architecture.

This design also allows for a feedback loop, where a program introspects its own performance
and takes run-time decisions based on past observations. This theoretical possibility is intentional
and reflects past knowledge in the field; it is not yet exploited in Apple-CORE but will be in the
separate ADVANCE project.

3.2.1 Low-level support for performance counters

A key aspect of monitoring is to have as little impact as possible on the behavior of programs. Besides
obvious considerations of performance, there is an additional issue with fine-grained concurrent
systems: monitoring latencies of more than a few cycles could cause schedule discrepancies between
runs with and without monitoring enabled, in turn causing side effects on synchronization, resource
allocation, etc. With a system which requires monitoring functions to be called in software (syscalls
or traps), the additional memory activity due to the call and moving arguments around would
disturb cache and on-chip network behaviors.

We want to avoid these effects. In our chip architecture, we do so by implementing a lightweight
form of memory-mapped I/O as follows:

• on each hardware device (core, cache, etc.) that can be monitored, we add hardware counters
for each of the relevant metrics; these are updated by each basic hardware process involved.
For example a clock cycle counter would be incremented on each clock edge; a cache miss
counter would be incremented each time a request goes through a cache, etc.;

3.2 Synchronous in-program monitoring 11

• we augment each core cluster’s interconnect with a low-bandwidth, medium-latency ring net-
work where each component with counters is connected. This network supports individual
read requests to counters addressed by the node ID, counter ID, and collective accumulation
of the same counter ID across all local nodes;

• on each core, we add a comparator to the pipeline memory stage, which transforms every
memory load addressing a special address range into a network request to one of the counters,
bypassing the normal cache access. This matches the high order bits of every address through
a statically configurable pattern (we use all upper bits set to 0), and uses the low order bits
as the counter address on the network.

Because we use cluster rings, the latency of counter requests to the local cluster are bounded by
the size of the cluster, not the entire chip. Since our architectural design mandates clusters of 64
cores or less, we are able to bound the latency for these requests to 20 cycles or less.

Also, because these requests are handled like memory loads, they are asynchronous by nature
and multiple requests can be issued before they are synchronized. This allows for efficient latency
hiding in the sampling operations. Monitoring synchronicity occurs because these requests are not
issued before known points in the program’s execution, and they are synchronized before other
known points are executed.

At the time of this writing, the following counters are supported:

• on each core:

– clock cycle counter,

– number of cycles the pipeline was active,

– total number of instructions executed,

– total number of floating-point operations issued to the FPU,

– total number of completed memory load instructions,

– total number of completed memory store instructions,

– total number of bytes loaded (number of loads times the width of each load),

– total number of bytes stored (number of stores times the width of each store),

– integral of thread table occupancy (see below for definitions),

– integral of family table occupancy,

– integral of the allocation queue size for exclusive creates,

• at each L1/L2 cache:

– number of cache hits,

– number of cache misses,

• on each cluster:

– number of cores on the cluster,

• at the external memory interface:

– total number of cache lines fetched from external memory,

– total number of cache lines stored to external memory.

As explained previously, all these counters can be sampled collectively across all nodes in a ring.
For example, to get the total number of instructions, a network request can be sent across the ring
to accumulate the number of instructions per core across all cores.

12 3 MONITORING

In this list the thread and family table occupancy merit special attention. The purpose here
is to observe the utilization of the concurrency resources on chip, i.e. how much these tables were
used between two execution points in a program. Because we cannot associate individual counters
to each entry in these tables (e.g. number of cycles each entry was used), we needed to determine
a metric that would allow us to compute utilization a posteriori. This is implemented as follows:

• when a table-updating event is handled by the relevant processes (family/thread allocation,
creation, cleanup), a counter is updated which reflects how many family/thread entries are
currently allocated;

• simultaneously, the product of the internal “current allocation” counter with the delay since
last event (value of cycle counter at current event, minus copy of cycle counter taken at
previous event) is added to the globally visible occupancy counter.

This process effectively integrates the allocation counter non-continuously over time. The aver-
age occupancy can then be obtained for an arbitrary interval of time by dividing this integral by
the time elapsed, measured in cycle counts.

3.2.2 Software-hardware interface

The low-level hardware mechanism presented in the previous section is visible to software through
the standard memory access interface, i.e. memory load operations. Each counter is identified by
the low order bits in a memory address, i.e. we can abstract the set of all pointers through a set of
named pointers to their pseudo-locations in the memory address space.

By further expanding the width of all counters to the width of an ISA register, exposing as a
static constant (either in hardware or software) the total number of counters available, and ensuring
that all counter addresses are continuous in the address space, we further homogenize the access
from software by exposing all counters in a layout identical to a contiguous array in memory.

However the following information needs to be provided to software as well for each counter:

• a label, that will identify the counter in reports, etc;

• a unit type that provides safe guards against misinterpretations of the counter values; in par-
ticular we want to distinguish between watermarks, level values and accumulators/integrals.

For the time being, this information is expressed entirely in software, as a predefined (static)
set of values specific to the Microgrid architecture. We envision this information to be available on
chip through a configuration ROM.

See CSA note [sl8] for more details about how this interface should be used in programs.

3.3 Asynchronous architectural monitoring

The other requirement for monitoring is intended for situations where multiple programs are sharing
resources which must be collectively monitored, or for the case where programs are not equipped
with in-program monitoring, and thus must be externally observed.

For this we propose a straightforward mechanism: asynchronous, periodic sampling of moni-
toring counters. In this mechanism, a dynamically selected subset of all performance counter is
collected across the entire network at a configurable interval, and streamed out of the chip onto a
separate system in charge of collecting this trace and synthesizing high-level behavior metrics.

Because of the large latency of such an operation and the impact on the interconnect, we propose
this sampling interval to be relatively large compared to the system clock period(s) (e.g. every 10
milliseconds on a GHz-clocked system). This contrasts with the previous approach which is more
synchronous and allows for latencies of tens of cycles (10s of nanoseconds).

Also, because this sampling is asynchronous, the resulting measurements are accordingly impre-
cise: when collecting the instruction counts across the chip, the individual instruction counts on

3.3 Asynchronous architectural monitoring 13

Figure 1: The monitoring architecture implemented by the Microgrid simulator and SL toolchain

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1e+06 2e+06 3e+06 4e+06 5e+06 6e+06 7e+06 8e+06 9e+06
 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

ef
fic

ie
nc

y

#t
hr

ea
ds

 (a
llo

ca
te

d/
w

ai
tin

g)

pipeline efficiency
pipeline efficiency (1000 sliding avg)

threads waiting on excl place
threads allocated

Figure 2: Example graph demonstrating the information made available by the architecture mon-
itoring interface. The horizontal axis represents time in nanoseconds.

14 3 MONITORING

each cores will be sampled at different points in time, and thus the collective sets of counter values
will not reflect an instantaneous observation of the chip. However, this imprecision is bounded,
because the latency of this collection is bounded and the counters are evolving as a continuous
function: one can estimate accurately the error margin of each sampled value by relating the local
change rate of the counter with the overall sampling interval.

We have implemented this mechanism in our simulation environment as shown in Figure 1 with
an example graph of the furnished data shown in Figure 2. More information about its function
and its use is described in CSA note [mgsim9], attached as Appendix B.

3.4 Summary

During this phase of the project it became increasingly necessary to be able to monitor and in-
trospect the management of concurrency on chip for both troubleshooting and analyzing program
and architectural behavior. For this we designed two systems with low impact (next to none) on
scheduling and performance, i.e. transparent to execution. One is controlled by programs to mea-
sure individual instances of kernels and the other to monitor asynchronously the architecture during
execution.

15

4 Input/Output in SVP and Microgrids

4.1 Overview

This section presents the design for general purpose device input/output, and associated interrupt
system, which works at both the level of the SVP concurrency model, in an operating system stack,
and also with the associated hardware implementation in the many-core Microgrid. This section
assumes a working knowledge of SVP and the Microgrid; appropriate background can be found
in [16, 17]. The model and work presented in this section was published and presented at the
SAMOS 2010 conference [13].

4.1.1 Motivation

As part of the AppleCore project, the Microgrid and SVP model are proposed not only as a so-
lution for specialised scientific computation but also, importantly, as a system for general purpose
computing.

The proposal of a more general purpose Microgrid has initiated great consideration and research
into operating system features. Parallel architectures are necessitating a far more decentralised
operating system design approach [31, 25], specifically for I/O, since it is not possible for every core
to be directly coupled to the I/O infrastructure. As such it is desirable to have an I/O facility that
is not merely an afterthought, but fundamentally engineered to make full use of the parallelism
provided by a many-core system, the SVP/Microgrid model, for communication with a diversity of
external devices.

4.1.2 Context of I/O Work

Figure 3 shows the areas of the AppleCore project that are affected by the work carried out on I/O.
Bearing in the mind the I/O research included both software (OS stack) and hardware (emulated
I/O cores), these areas namely include:

• An interface in µTC with which client functions can access the I/O subsystem (see subsub-
section 4.2.1)

• An operating system stack which models I/O event and interrupts in the framework of SVP
on the Microgrid (see subsection 4.2)

• An implementation in the Microgrid emulator of special ‘I/O Cores’ (see subsection 4.3)

• An architecture for modelling device interactions with I/O Cores, under emulation (see Sec-
tion)

4.1.3 Related Work

The use of dedicated programmable processors to handle I/O is not something new, having been
first introduced in 1957 when it was implemented in the IBM 709 system [14]. Following this
development, the IBM System/360, System/370 and the architectures that superseded them have
featured channel processors for high performance I/O [15]. Another system from this period that had
even more similarities to the approach described in this report was the Control Data CDC6600 [29],
which had a dedicated I/O processor that shared 10 distinct I/O processor contexts. As these I/O
processors were very limited and only supported a simplified instruction set for handling I/O, they
are not very different from the programmable DMA controllers found in modern computers. Both
approaches serve the same purpose: to prevent the CPU from being frequently interrupted during
dense I/O operations. This is also a problem in real-time embedded systems [27], where it is common
that state-of-the-art micro-controllers are equipped with a peripheral control processor which can
be used to handle interrupts while the main processor can still meet its real-time obligations.

16 4 INPUT/OUTPUT IN SVP AND MICROGRIDS

Figure 3: The location of I/O related investigation and implementation within the SVP model and
AppleCore project. The areas discussed in this I/O section are highlighted and marked with an
asterisk (∗)

The Helios OS [25] distributes small satellite kernels to programmable I/O devices in order to
offload the execution of programs and system services. It uses affinity meta-data to hint about
efficient placement of such programs to put data processing close to its source. As it targets hetero-
geneous platforms, it uses independent byte-code to represent programs which are then compiled for
the specific device. In the I/O system described in this report, there is no such problem of hetero-
geneity as the I/O cores are similar to the other SVP cores, albeit with a restricted instruction set.
The model described in this report would also benefit from the intelligent placement of components
to use the locality of data. Others have also observed this as a problem, and suggest [7] that in order
to achieve high throughput I/O, tightly coupled communication between the components, with no
global interactions, is highly desirable. This suggestion mirrors the distributed operating system
design approach being taken on the AppleCore project.

4.1.4 Key Areas of the Work

The designs and implementations described in this I/O section are a result of the novel methods with
which software and hardware Input/Output communication and interrupts with external devices
can be implemented within the SVP concurrency model and in the Microgrid hardware, but also
more generally in many-core architectures and environments. The I/O scheme consists of novel
implementations both at the abstract level of concurrency, making use of the features provided
by SVP, in an operating system software stack, and also in the Microgrid many-core hardware,
introducing the concept of an I/O core and the use of the efficient on-chip COMA memory system
for high data-throughput with a variety of devices.

The implementation and modelling described is non-trivial and required great consideration and
implementation time within the framework and feature set of SVP and the Microgrid, from both a
software and architecture perspective.

The result is a highly scalable and parallel I/O architecture that, in the hardware implemen-
tation, bypasses external memory bus bandwidth limitations and contention, for efficient parallel

4.2 I/O Operating System Stack 17

I/O. The model is completely decentralised from a monolithic operating system model, in common
with the micro-kernel approach originally proposed for the AppleCore project. It embraces the idea
of parallel services and as such is well placed for integration into a distributed operating system
kernel.

4.2 I/O Operating System Stack

When implementing device I/O in the SVP model, and also on the Microgrid architecture, there
are two distinct levels at which the problem is addressed. This section is concerned with the
implementation of I/O at the software and SVP level, where the traditional requirements of device
I/O must be reconciled with the advantages, facilities and restrictions of the SVP programming
model. In practical terms, this level will reside in the operating system driver API.

Client A

Client B

External
Device

Generic I/O Controller Software Stack

sync
r/w

async
r/w

'Sear'
thread

'call-back'
thread

Head

Tail
Queue

Controller

Device
Descriptor

Node

Completion
Signaller

Dispatch
Controller

R/W
Action
Thread

Low-Level Driver

Create

Create

Sync

Data
Buffer

Figure 4: An overview of the Generic Software I/O Controller software stack which implements
generalised I/O events using µTC for SVP. All processes inside the enclosure annotated by the †
symbol must take place at the driver controller’s designated exclusive place. Processes in the low
level driver enclosure, annotated with the ‡ symbol, are executed at the designated SVP I/O place.
Objects in square-cornered boxes represent threads; round-cornered boxes represent conceptual
groupings and privilege domains (where Client A and Client B are applications).

The SVP software level I/O controller described in this section has been implemented in µTC
for SVP; it is a highly flexible model of I/O which is compatible with all of the implementations of
SVP, with extant interfaces to both the Microgrid hardware (see subsection 4.3) and also the µTC
p-threads back-end (which was used for initial prototyping).

The I/O model implemented in SVP is designed to be as noninvasive as possible. This is achieved
by providing a familiar software interface to client SVP programs: the standard ‘read’ and ‘write’
system/library calls are preserved and additionally the expected synchronous and asynchronous
behaviour of I/O is provided. The example instance described in this chapter focuses largely on
a device configuration of the ‘request-response’ form (e.g. a block device), since this is the most
typical kind of device use-case, but the model is not limited to those types of devices.

It should also be noted that the model described in this section forms the generic basis of the
I/O system. As a result, it is possible to encapsulate calls to this generic stack with further APIs,
for instance a file system library which provides an abstraction over the structure of data on a device
and would thus issue potentially multiple I/O actions for a single library call.

4.2.1 µTC I/O API

The API exposed to developers by the operating system stack is designed to be as familiar as
possible, while still encapsulating the novel features and workings of the I/O architecture presented.
With this in mind, the API consists of ‘system calls’ which initialise a device and allow for reading

18 4 INPUT/OUTPUT IN SVP AND MICROGRIDS

� �
//−−−−−−−−−−−−−−−−−−Configuration Methods−−−−−−−−−−−−−−−−−−−−−−−−−
INIT DEV(id, place, explace, flags, drv, buffer size , q size , nodepntr)

DEINIT DEV(nodepntr)
//−−

READ DEV(nodepntr, buffer, size)

WRITE DEV(nodepntr, buffer, size)

READ DEV ASYNC(nodepntr, buffer, size, callback)

WRITE DEV ASYNC(nodepntr, buffer, size, callback)� �
Figure 5: Method signatures for the principle I/O API components (types omitted for sim-
plicity), where: id→the channel ID of the device, place→the I/O place at which the de-
vice exists, explace→the exclusive place at which the higher-level device controller should exe-
cute,flags→some idiosyncratic device behaviour flags, drv→a pointer to the low-level driver for
this device, buffer size→the size of the internal device buffer, q size→the length (in requests) of
the internal queue, nodepntr→a pointer to the device descriptor node, buffer→the read/write
data in memory for the I/O request, size→the requested read/write size of the I/O event, call-
back→the address of the callback method.

and writing to a particular device node (compare with reading and writing to file descriptors in
Unix-like systems).

Figure 5 shows a summary of the main methods exposed to the system programmer by the
operating system stack. ‘INIT DEV’ is used to configure a ‘device descriptor node’ in memory,
‘DEINIT DEV’ is used to release the resources held by a device, ‘READ DEV’ and ‘WRITE DEV’
are used to perform synchronous I/O operations, while ‘READ DEV ASYNC’ and ‘WRITE DEV ASYNC’
provide access to the asynchronous I/O operations. These methods are to be used in the standard C
manner, as sequential method calls; they encapsulate the µTC thread creation and synchronisation
behaviours in their expansion. An example program, using the I/O API shown above is included
as Appendix G.

4.2.2 I/O Model (Synchronous and Asynchronous)

Figure 4 shows an overview of how synchronous and asynchronous read and write calls to the
I/O subsystem work. This model is best explained by stepping through each component shown in
Figure 4.

Client Request

Client threads A and B issue synchronous and asynchronous read/write requests, respectively, to
the I/O API. By specifying the Device Descriptor Node for the device, this triggers entry into the
generic driver I/O subsystem and a switch to system level privileges (similar to a system call) by
the way of an SVP create action, which creates an instance of the appropriate library call thread at
the device controller place. The desired action, a size and pointer to the data in memory are also
provided.

Client A, issuing a synchronous read/write action, also creates an empty thread referred to as
a sear thread which itself simply suspends indefinitely. Client A will then wait for this thread to
complete by performing an SVP sync action. When the synchronous I/O action has eventually been
serviced by the software I/O controller, the sear thread will be terminated by the controller issuing
either a remote shared-register write (on the Microgrid) or an SVP kill action (on the PTL-backend).
The concept of the sear thread is necessary to allow the synchronisation by a client over the I/O

4.2 I/O Operating System Stack 19

event whilst still fully decoupling the execution of said client from the software I/O controller’s
context. This is due to a property of the SVP model, and other parallel models, which does not
allow the synchronisation of two threads without a parent, child or sibling relationship.

Client B, issuing an asynchronous read/write action, provides the address of a call-back thread
which will be created by the I/O software controller at the point of read/write service completion.
Execution in Client B continues while the I/O operation takes place. It should be noted then that
Client B should take care to account for the concurrent execution of its code by the asynchronous
callback – the burden lies with the client to ensure synchronisation of its data-flow around this
event.

Device Descriptor Node

The device descriptor node, created by initialising a device, is a data-structure in memory which
contains the necessary information about the I/O device, pointers to the relevant data structures
and the exclusive device controller place information. From the perspective of memory protection,
this structure would reside in the system-level protection ring, accessible only to privileged code.

Request Queueing

The service executes the Queue Controller at the exclusive ‘Device Controller’ place. At this point,
the semantics of the SVP exclusive place ensure that SVP creates are queued and that only one
instance of the controller thread is executed at any given time. The queue controller now checks
for space in I/O queue and, assuming there is a slot, adds the read/write request to the back of the
queue. The queue controller then invokes the Dispatch Controller to notify it of a modification to
the queue.

Request Dispatching

The Dispatch Controller examines the device descriptor node to see if an I/O operation is currently
active. If an I/O operation is already active on the device, execution in the software I/O Controller
terminates. Otherwise, it checks the pending queue of jobs. If the queue is not empty, it performs
an SVP create on the R/W Action Thread, delegating it to the place at which the device exists and
updates the device descriptor node to mark the device as active. The r/w action thread is created
with the parameters of the particular read/write operation: the size, target, and a channel number.
Execution in the software I/O Controller terminates and is fully decoupled from the low-level I/O
action itself.

I/O Actions

In the R/W Action Thread, a single I/O operation from the queue is served and actual communi-
cation with the device takes place. The r/w action thread suspends based on the interrupt of the
External Device while the operation is serviced by the device. The resulting data is read from or
written to the appropriate memory location. Upon completion of the individual r/w, an SVP create
action is performed on the Completion Signaller, to signal completion of the low-level operation.
Execution in the Low-Level Driver ends.

Client Synchronisation Signal

The Completion Signaller thread, created by the completed r/w action, is responsible for ‘waking up’
the client. Based on the information in the record for the particular I/O operation, the completion
signaller will either: terminate the appropriate sear thread in the client (allowing execution to
continue in a synchronous I/O action) or perform an SVP create action on the specified ‘call-back’
thread in the client, for asynchronous I/O. The completion signaller also updates the Device Node
Descriptor, signifying that the device is now ‘free’ and triggers the Dispatch Controller so that the
next I/O operation can be processed.

20 4 INPUT/OUTPUT IN SVP AND MICROGRIDS

General Notes

All device controllers in this model have to be initialised with a number of desired behavioural
parameters. An important parameter is the location of the buffer for the I/O data. This can either
be in the software device controller, where the appropriate I/O data will then be copied into the
client’s buffer as required, or the device controller can read/write the I/O data directly from/to the
client’s address space with each I/O action.

The previous example describes the request-dispatch device controller behaviour, where I/O
requests trigger the dispatch of a low-level operation as required. However, the software I/O con-
troller can also issue a continuously listening low-level thread which fills an internal buffer in the
I/O controller stack. Subsequent I/O read requests can then be served from this buffer.

4.2.3 Low-Level Drivers

The low-level driver thread is required to perform a single I/O action directly with the device on the
SVP place at which communication with the device can take place. Additionally, it is the low-level
driver that generates the events which drive the higher I/O stack.

The low-level driver implements a standard interface which takes the necessary parameters for
an individual device communication (for instance a read or write action, seek and also initialisa-
tion activities). Thus, only the low-level driver need be reimplemented to work with new device
interfaces. The actual nature of the internals of the low-level driver depend on which SVP imple-
mentation is used. On the Microgrid, the low-level driver would need to perform register and bus
level communication with the external device itself. However, were the distributed Pthreads SVP
implementation in use, this low-level driver could simply be a proxy to the system calls of one of
the host environments in which execution is taking place.

4.2.4 I/O Places

An I/O place (‡ in Figure 4) is an SVP place at which a particular device exists, in the sense that
communication with that device can be locally achieved. An I/O place does not necessarily have to
be remote, however in the Microgrid hardware implementation of SVP that I/O place will correlate
to the I/O Core, introduced in subsection 4.3. In a more generic implementation of SVP, this
I/O place could be a remote environment or machine that provides access to a particular resource.
Importantly, more than one device may be associated with a particular I/O place – this is captured
by the channel identifier.

4.2.5 Parallel I/O

The generic I/O model shown here, with the separation of atomic I/O actions from I/O places,
makes parallel I/O relatively straight forward. If a particular device has many interfaces to the I/O
infrastructure, where there are multiple places at which a low-level driver thread can communicate
with a device, for instance in a RAID style configuration, then the dispatch controller can decompose
a single I/O operation into multiple segments and distribute these to the array of I/O places. This
approach is particularly useful when combined with lower-level implementation support, as is the
case in the Microgrid (subsubsection 4.3.6).

4.3 Microgrid I/O Implementation

The SVP I/O subsystem described in subsection 4.2 requires support from the specific implemen-
tation; it must provide the low-level driver service through an interface to external hardware. This
section describes how such support can be implemented in the hardware of the SVP Microgrid.

The overall hardware scheme for I/O in the Microgrid can be seen in Figure 6, where external
devices are connected via a HyperTransport-like bus to dedicated I/O Cores. The scheme is based
around a model of message signalled interrupts communicated via a bus interface, similar in nature
to MSI in the PCI specification [28].

4.3 Microgrid I/O Implementation 21

Microgrid

I/O
Core

I/O Devices

HyperTransport-like
Bus

High Speed
I/O Device

(Legacy)
Interface

USB/
Firewire

PCI/X
HT-like

Bus
Interface

Reg. File

I/O
Control Regs

DMA

Individual I/O Core

External Memory L2
Cache

Processor
I/O Control Regs

I/O Control Regs

SVP
Core

SVP
Core

SVP
Core

SVP
Core

SVP
Core

SVP
Core

SVP
Core

SVP
Core

SVP
Core

SVP
Core

SVP
Core

SVP
Core

SVP
Core

SVP
Core

I/O
Core

L2

L2

L2

L2

Figure 6: A schematic overview of the architectural implementation of I/O in the SVP Microgrid.
An enlarged individual I/O core is shown to the right. The L2 Cache shown is part of the on-
chip COMA. Individual external devices are shown to the left, including a potential legacy DMA
controller.

4.3.1 I/O Cores

A derivative of the regular SVP core, the I/O Core is the hardware realisation of the conceptual
I/O Place introduced in subsubsection 4.2.4. It is the place to which the low-level driver is created
for a particular read/write operation. It can be distinguished from other general purpose cores in
the Microgrid by the following characteristics:

Bus Interface – the I/O core contains a Bus Interface device which connects the I/O Core to
a bus for high-speed communication with external devices. This hardware is only present in I/O
cores.

Simplified logic – given the specialisation of the I/O Core as a place only for performing I/O,
it does not need to contain floating point logic, and the size of the integer register file can also be
much smaller than general purpose cores (given the simplicity of the threads it will be executing).

I/O Instruction – the pipeline of an I/O core responds to a special I/O instruction which allows
threads to issue and wait for events on the high-speed bus.

The purpose of the distinct I/O core is to relieve fully-fledged Microgrid cores of the burden
of I/O operations and to allow a higher density of parallel I/O to take place in the Microgrid.
Specifically, the I/O core allows the rest of the Microgrid to continue executing in parallel while
I/O operations are serviced. The reduced complexity of I/O cores, needing only to handle simple
atomic I/O operations, means that their footprint in the architecture is relatively small, potentially
allowing for more parallel I/O places in a fixed budget.

4.3.2 High-Speed Bus

Each I/O Core interfaces with a HyperTransport-like [8] packet/message bus by means of a simple
on-chip bus controller. While in principle a variety of packet-based buses could be used, the Hy-
perTransport bus was selected based on its ubiquity in various high-speed I/O applications and the
ability to interface with a variety of existing high performance devices. As can be seen in Figure 6,
the bus need not be connected directly to a single device, but can itself be connected to another
interface which multiplexes between several devices using channel identifiers, including, for example,
legacy bus implementations.

The bus is specified as HyperTransport-like because it is unlikely that all of the features of the
HyperTransport specification would necessarily be implemented; rather, the hardware specifications
of HyperTransport serve as a basis for achievable transfer rates in future simulation.

The width of the HyperTransport-like bus is variable and a parameter chosen at implementation
time. The current HyperTransport specification (3.1) stipulates a maximum bus width of 32 bits

22 4 INPUT/OUTPUT IN SVP AND MICROGRIDS

with a unidirectional transfer rate of 25.6 GB/s per second (this can be seen as double to aggregate
bidirectional transfers).

4.3.3 Bus Interface

The bus interface is a small piece of logic (comparable to a simple interrupt controller) present at
I/O Cores which is responsible for connecting the processor pipeline with bus events and messages.
The bus interface performs the following actions:

1. Compose and decompose bus messages appropriately, based on the associated channel infor-
mation.

2. Deliver channel events into appropriate I/O control registers (subsubsection 4.3.5).

3. Perform reads and writes from/to memory of the data payload in I/O events at a specified
location (this can be either to the memory subsystem directly, or to the register file).

The bus interface device is controlled entirely through the ioctl instruction. As noted in point
2, the bus interface is responsible for triggering changes in the state of the synchronising registers,
based on bus events.

4.3.4 Device Communication and Interrupt Handling

Communication with external devices connected to an I/O Core take place using a special instruc-
tion, the execution of which is only defined at I/O Cores. The I/O Control Instruction (see Table 2)
is used to perform an individual read or write operation on the bus and provides an associated syn-
chronisation with this operation.

Table 2: I/O Core ‘I/O Control Instruction’
Mnemonic Operands (registers)
ioctl control size src/dst

Operands Description
control Specifies mode and channel (de-

vice) identifier
size Requested size of read/write to

perform to bus
src/dst The target or source (buffer or reg-

ister) of the read/write operation

The low-level driver described in subsubsection 4.2.3 essentially implements a small thread con-
taining an appropriate (per device) usage of the I/O Control Instruction, associating the dispatched
I/O operation’s parameters to the operands of the I/O Control Instruction, after performing any
required intermediate operations.

The control operand specifies a register containing bit-level information stipulating whether a
read or write operation should be performed, the channel identifier (which identifies a device) on
which to broadcast or listen and whether or not the bus interface should read/write data directly
to the COMA memory interface or the register file (the latter negates the use of the size operand).
This information is contained in one of the standard registers in an I/O Core.

The two modes of operation, Register⇐⇒Bus and COMA⇐⇒Bus, allow for the differences in
performance trade-offs; Register⇐⇒Bus communication is useful for low-level control tasks where
the control operation can be passed as an thread parameter and accessing memory is an unnecessary
performance overhead. High-volume transfers can, in principle, be carried out through registers,
however the implementation of the Bus Interface also permits a direct mapping of the processor’s
address space on reads and writes (see Figure 6 and subsubsection 4.3.3).

4.4 Summary 23

4.3.5 Synchronising and Interrupts

Synchronisation is achieved with an elegant modification to the semantics of Microgrid registers at
I/O Cores. All registers in an core’s register file in the Microgrid have a synchronising behaviour,
achieved through the use of state bits at each register.

When the ioctl instruction is issued in the pipeline, the control register operand has its synchro-
nising state marked as ‘pending’. The low-level driver thread can then perform a read on this control
register, at which point its execution will be suspended in the normal way of a thread which reads
a register flagged as the target of a write operation. When the appropriate I/O channel’s transfer
completes, the I/O interface will adjust the state of the control register to ‘full’, at which point
the suspended driver thread will resume execution. As shown in Figure 4, this would consequently
trigger the completion signaller.

4.3.6 Memory Interface

All cores in a Microgrid are connected to the on-chip COMA hierarchy (see [17] for Microgrid
COMA information). Data written to the Microgrid COMA memory system will migrate through
the hierarchy to the location at which it is read. This property is exploited to achieve very high-
performance I/O in the model described in this report.

All I/O operations, whether lightweight operations through registers or bulk transfers, will
eventually write/read their data to/from the associated buffer in memory. This means that I/O is
not bound by the traditional limitations of memory bandwidth, as is the case with existing DMA
architectures [10], and is fully decoupled from external memory bus contention by being distributed
to potentially several different I/O buses instead.

The organisation of the COMA memory system into rings, unifying separate caches, means that
not only can I/O be extremely fast, but also extremely parallel. I/O operations can take place
in parallel, at different I/O cores, with different clients, using only the local memory subsystem
and avoiding thrashing of the memory hierarchy between conflicting operations. This property
introduces the concept of I/O locality, where, for the highest performance, a place allocator will
delegate a client to a place on the same COMA level as the associated I/O device’s I/O Core;
i.e. they will share the same L2 cache. A ‘smart’ placement algorithm would ensure that jobs on
Microgrid are created at a place appropriate for the I/O dependencies of that particular job.

4.4 Summary

In this section we have presented the novel combination of methods for performing I/O in the highly
parallel environment of SVP and Microgrids. The approach first explored the implementation at
the level of the concurrency model; the way in which signalling and interrupts can be represented
in the parallel environment of SVP, where conventional interrupt and I/O mechanisms are not
applicable due to the decentralised nature of a many-core operating environment. The approach
of using listener/writer threads with I/O places obviates the need for a central ‘interrupt handler’
model. This software level model has been fully implemented in µTC.

We also described the implementation of specialised ‘I/O Cores’ in the Microgrid hardware
architecture. These cores are special processing units of reduced complexity which are connected
to a high-speed bus for device communication, and they provide a device interface to the higher
level I/O stack. The particular advantages of I/O cores are that they allow I/O operations to be
fully decoupled from general purpose cores for truly parallel and scalable I/O. The ability of the
I/O core to read and write data directly to the local on-chip COMA cache hierarchy allows for
very high device-to-client transfer rates and bypasses the limitations of the standard DDR memory
buses (which are already under intense pressure in a parallel architecture), when compared to
conventional DMA.The hardware model of specialised I/O Cores is implemented in the Microgrid
software emulator.

24 4 INPUT/OUTPUT IN SVP AND MICROGRIDS

4.4.1 Performance Results

This section presents some simple performance results from experimentation with I/O cores in the
Microgrid cycle-accurate emulator. These experiments were designed to highlight the scalability
and parallelism of the I/O infrastructure described in the preceding model and not simply its raw
transfer performance (which is simply calculable and uninteresting for experimental results).

Maximum Transfer Rates

The current specification [8] of the HyperTransport bus has a unidirectional bandwidth of up to 25.6
GB/s. If this were to be streamed into external memory, as with DMA, the bandwidth would be
limited by the bandwidth of the memory. For state-of-the-art DDR3-1600 memory, this bandwidth
lies at 12.8 GB/s. However, considering that external memory is shared by all processors on the
Microgrid, the effective bandwidth is, in practice, considerably lower.

The COMA memory, with a 1.0 GHz cache-line-wide ring network (in a typical experimental
Microgrid) can achieve a measured bandwidth of up to 64 GB/s. This bandwidth is guaranteed
between local caches, without interference from the rest of the system. Thus, if the consumer of the
data is physically close to the I/O interface, the HyperTransport bandwidth can easily be matched
by the COMA system and, furthermore, these transfer rates can take place simultaneously at many
rings.

Baseline Experimental Configuration

Table 3: Experimental Baseline Configuration

Parameter Specification
Microgrid Experimental Standard 128 Core Micorgrid
Kernel Used Modified version of Livermore Kernel 11
Problem Size 217, double precision floating point
Subsequent Data Size 2 MB (two arrays used by kernel)
Kernel Execution Place Sizes 8 places remote from I/O cores, each of 2 cores

(executing a parallel reduction), and 8 places ad-
jacent to I/O cores, each of 2 cores (i.e. sharing
the same L2 cache of each I/O core)

Microgrid Frequency 1.0 GHz
L2-Cache Size 32KB
Memory Speed DDR 800MHz
HT-Like Bus Frequency 1.0 GHz
HT-Like Bus-Width 16 bits
Number of I/O Cores 1,2,4,8,16 (parameterised by experiment)
HT-line Buses at each core 1 (currently a fixed property)
Simulated devices Synthetic SATA devices, with average sustained

transfer rate of 100 MB/s

Table 3 shows the baseline configuration used for the results presented in the subsequent pages.
The HT-like bus frequency and width were selected modestly to permit a realistic pin-out based
on HyperTransport bus specifications at the highest numbers of I/O cores (where several buses are
present). The simulated device, and associated bandwidth, were selected to show both scalability
(before saturating the memory system) and also to show how the I/O subsystem can tolerate off-chip
device latencies through I/O parallelism.

The kernel chosen is intentionally simple in nature, since the computation performance of com-
plex programs is not to be demonstrated in these results. In the case of the selected kernel, its data
is loaded through the I/O software stack (written in µTC) and the emulated I/O hardware (in the

4.4 Summary 25

cycle accurate emulator), using the specified number of I/O cores.
The following two sets of results firstly demonstrate the correct functioning of the I/O imple-

mentation at both the software and (emulated) hardware levels. Secondly, they demonstrate the
two important performance properties of I/O on the Microgrid: scalability and COMA-cache-local
I/O.

Scalability with COMA-Remote I/O

In this experiment, the baseline configuration shown in Table 3 is used, and the number of kernel
processing places is held constant (to isolate first the effect of I/O scaling) at 8 places, each of
two cores. The number of I/O cores is a variable of the experiment, and scaled from 1 I/O core
up to 8 I/O cores, where I/O events are subsequently parallelised over the available I/O places
(see subsubsection 4.2.5). Each executed experiment begins first by loading the required amount
of data into memory, via the I/O cores, and then continues by processing this data with the kernel
elsewhere on the Microgrid. The results are shown in Figure 7, where a dark and light bar represent
a breakdown of the time spent in each run performing I/O and executing the kernel on the results
loaded into memory.

Figure 7: Emulated timing-results for I/O core scaling, with non-local kernel processing resources
held constant

In the results presented in Figure 7 it can be observed that I/O duration initially dominates
kernel execution duration, however the performance of the I/O subsystem scales well, almost linearly
at smaller numbers of cores. As the number of I/O cores is increased, a slight slow down in scaling is
observed as the overhead of I/O operations becomes noticeable. There is a slight increase in kernel
execution time as the number of I/O cores is increased, likely accounted for by memory system
behaviour as the number of caches used for I/O changes. The total amount of data read in these
small experiments is still too large to be completely contained in the caches of the COMA memory
system when I/O takes place in a single pass. As a result of this, the data will be written to the
slower off-chip memory, and kernel execution duration begins to dominate I/O duration.

Scalability with COMA-Local I/O

In this experiment, the same baseline configuration is used as for the previous experiment but with
one important difference: here, the kernel processing places are clustered, where each processing
place is a pair of cores, with the I/O cores in order to share an L2 cache (there can be 4 clients for
an L2 COMA cache, with the I/O core currently counting as two clients – one for the pipeline and

26 4 INPUT/OUTPUT IN SVP AND MICROGRIDS

one for the bus controller). I/O transfers and kernel processing is arranged into blocks based on L2
cache size, where an I/O read fills the L2 cache, and then a kernel segment of appropriate problem
(data) size is dispatched to the local processing resource as each I/O event completes. This process
happens iteratively at each core and can be implemented elegantly using the asynchronous callback
mechanism of the I/O model (see subsubsection 4.2.2). The results of this experiment are shown in
Figure 8.

Figure 8: Emulated timing-results for I/O core scaling using blocked local cache transfers, and
where cache-local kernel processing resources scale with the number of I/O cores

In the results in Figure 8 we can see roughly the same I/O scaling trend as in the previous
experiment. However, total I/O time is slightly increased as there is a higher constant overhead,
proportional to the number of times that the total transfer size is broken into cache-sized blocks (in
the case of this experiment, each run issued 64 I/O operations; ≈2MB÷32KB, incurring the I/O
stack overhead many more times than the previous experiment).

The interesting and important trend that can be seen in the local-I/O results is that kernel
execution time scales very well; in the end, at 8 cores, the same kernel, executing on the same
number of cores in the same organisation, gains a considerable speedup over the previous non-local
version. This is because all of the I/O data is written to, and read from, an I/O-local cache – there
is no need to process data from external memory or migrate cache lines to remote places on the
Microgrid.

Results Conclusions

These encouraging results present only a small example of the problem space which is being examined
during our investigation of I/O for SVP and the Microgrid. However, they serve to demonstrate
the functioning and scalability of the I/O subsystem.

The I/O system of SVP and the Microgrid shown in this section is capable of absorbing the
latency penalty of slower commodity devices, where they can be parallelised, and also to take
advantage of much higher-speed devices by the use of COMA-local I/O, which can be shown to
scale in the same way even when extremely high-speed devices are used at faster HyperTransport
bus speeds. Indeed, such a software topology is necessary as COMA-remote I/O will be bound by
internal and external memory bus and behaviour limitations.

A more thorough investigation of the I/O subsystem is currently underway, including analyses
under various real-world application and load scenarios, with a view to further publication. Addi-
tional interesting points of discussion include the choice of the number of cores per L2 cache at I/O

4.4 Summary 27

places (potentially allowing for greater I/O processing locality, but greater cache contention) and
also the size itself of L2 caches at I/O places.

4.4.2 Milestones

The work on I/O is mentioned specifically as a facilitator for two milestones. These milestones,
along with the accelerator model, are discussed here, with particular reference to their relationship
with this work.

M5.3.2a � – OS I/O accelerator model: “The Microgrid can be used as a dedicated specialised
processing unit by a host system.” This Milestone was reached some time ago and this mecha-
nism was used to produce the majority of emulation results for publication by the Apple-Core
research teams. This is facilitated by the SL toolchain and the SL libraries (see Appendix G
and technical note SL3).

M5.3.2b � – OS I/O bridge model: “The Microgrid is coupled on-chip to a general purpose
legacy computing core connected to legacy devices and running a legacy operating system and
drivers,” where communication between these entities takes place through an I/O channel.
The IO research and implementation in this section fully facilitates this model and usage of
the Microgrid by utilising an I/O device as a simple channel between host and Microgrid.

M5.3.2c � – OS autonomous model: “The Microgrid is connected directly to I/O devices and
runs hardware drivers natively.” The model and emulated architecture implementation de-
scribed in this section provides a standard interface, in C++, to which emulated devices (or
device interfaces) can be ‘connected’. Using this interface, any kind of device can communi-
cate with applications running on the Microgrid, through I/O Cores and the operating system
stack. Currently, a simple device exists which allows the Microgrid to access files on the
host file-system; an emulated hard disk. All that remains for this milestone to be fully (and
imminently) completed is the implementation of emulated devices and/or emulated device
interfaces with an associated (simple) low-level driver object in the operating system stack
(see subsubsection 4.2.3). Existing and recognised operating system libraries can be used to
wrap the O/S stack and provide native support for things such as file-systems and networks.
All of this work is a straightforward extension to the outcomes presented in this section.

4.4.3 Future Work

Current work is focussed on the quantitative analysis of the I/O model’s performance in specific
application scenarios using emulated devices, and the integration of the I/O stack into the mainline
SL environment where it can then be used extensively in client applications.

28 5 COOPERATIVE DEADLOCK-PREVENTION

5 Cooperative Deadlock-Prevention

5.1 Problem Description

In a microthreads program, every family create consumes resources; thread table entries, family
table entries and registers. Since these resources are finite, situations can occur when a create tree
becomes too deep and/or wide and there are no more resources available to perform a create. If no
resources can be released without this create finishing, the create can never continue and resource
deadlock has occured.

This problem is expanded by delegation. A microgrid is divided into clusters of cores, each with
their resources. A create must be targeted to a specific cluster. If there are no more resources on the
create’s target cluster, even though resources may be available at other clusters, the create cannot
continue and resource deadlock can still occur.

There are some solutions to solve these issue in certain cases. One is to perform a static analysis
of the concurrency tree and request enough resources for the worst case scenario. This solution,
when it can be applied, is quite powerful as it completely alleviates the need for the deadlock
prevention mechanism described below, reducing the size of the code.

The delegation problem can be solved by not sharing places between applications with no knowl-
edge of each other. Then, if the requester of a place knows exactly how many resources this place
contains, it might know exactly if and when those resources will run out. This allows the compiler
or runtime to perform optimizations such as adjusting the block size to prevent this deadlock from
happening.

However, given that the number of resources available to an independent program can vary
at run-time and given that we want binary compatibility of programs across a range of configured
microgrids, programs would ideally have to be written to acquire knowledge of the available resources
and their division into clusters at runtime and then issue the create accordingly. Unfortunately, for
modular programs or programs generated from higher-level languages, such knowledge is non-trivial
to obtain or act upon.

To combat the threat of resource deadlock in these cases where knowledge about usage of
resources is limited or non-existance, a general method is desired that will ensure deadlock freedom
in all cases, with a possible sacrifice of performance.

5.2 Sequentializing

The immediately available solution to avoiding resource deadlock for creating families of threads
is not to do it. If, when resources run out, a call to the sequential version of the same code is
substituted for a create, this code can continue to run in the single thread context of the parent,
using a traditional stack, which can typically support a much deeper call tree than on-chip resources.

So, if we assume cooperative deadlock prevention among all code, we can define the following
code transformation whenever a create needs to be done, given that we have the pointers for the
sequential and threaded version of the target code. The transformation turns the following code:

create(F, Place, Start, Limit, Step, Block) work(...);
B;
sync(F);

into:

F = allocate(Place);
if (F == 0) {

B;
for (Start, Limit, Step) {

work seq(...);
}

} else {

5.3 Registers 29

do create(F, Start, Limit, Step, Block) work thread(...);
B;
sync(F);

}

The allocate operation will return 0 if the destination place is out of resources, and the creating
thread will then execute the sequential version of the algorithm instead. Note that the sequential
version is effectively run at the point of sync, i.e., the body between create and sync is run first.
This has to be done because the body B can write shared and globals that are required by the
family. This transformation also applies, recursively, to B.

5.3 Registers

The downside to this approach is that it generally requires more registers. When threads are
compiled with an optimized register context suited to their exact requirements, a function call
cannot be made because the callee shares the register context of the caller and the compiler cannot
compile the callee for an unknown register context layout. Thus, every thread that has a function
call must be compiled with a fixed register layout to allow for function calls to be made.

Note that this only applies to threads that have function calls due to this deadlock avoidance
protocol. Threads without creates, or ’pure’ creates that are not subject to this protocol, or those
with inlined function calls, can still have optimized register contexts.

5.4 Group creates

For the above construct to work, the allocate operation must atomically allocate enough resources
on every core that the family will run on. For local create this is easy, as it only runs on the core
where the allocate is executed. For delegated creates, a network message will effectively perform
a local create at the destination core. The issue arises with group creates which need an entry on
every core. While a message could be sent around with an undo message if the allocate fails, this
will cost many cycles. A more efficient solution is to use a single place-wide combined signal that
indicates the availability of at least one free context on every core in the place, and a place-wide
signal that is used to reserve one context at every core in the place.

These combined single-bit signals, which each must be able to traverse the entire cluster within
a cycle, allows a core to determine whether or not a group allocate can succeed.

Note that a second global signal is also required to indicate that a group create has been made,
in order to have each core reserve one context and adjust their ’free contexts’ signal accordingly
for the next core that wants to do a create. This avoids situations where another core wants to do
a group create without the former group create having reached all cores, thus causing a false ’free
contexts’ signal to be interpreted.

5.5 Delegated creates

As mentioned above, delegated creates simply use a traditional try-fail approach. If the remote
create cannot acquire a context on the remote core, the family is run sequentially on the parent
core.

5.6 Exclusive creates

Unlike group and normal delegated creates, which can default to run sequentially on the parent
core if the creates ’fail’, this cannot be done for exclusive creates, since their semantics depend on
being run at a specific place.

Fortunately, there is an easy solution: on every core, reserve a single context for exclusive
creates. Since only one exclusive create can be active on a core at any given time anyway, this
solution ensures that exclusive creates can always be run, as long as no cycles exist in the target
places of exclusive creates (which can be guaranteed in software).

30 5 COOPERATIVE DEADLOCK-PREVENTION

Note that the check for free contexts in the mechanisms outlined above must not consider this
reserved entry since they cannot use it.

5.7 Hardware extensions

To enabled cooperative deadlock prevention, two things are required from the hardware environ-
ment. First, the allocate operation must fail if it cannot guarantee that the family has enough
resources to be executed. Failure can be indicated by returning a certain “illegal” value (e.g., 0).

Secondly, guaranteeing availability of enough resources must mean, specifically, that the hard-
ware guarantees that on every core where the family will (or can) run, there is:

• At least one free family table entry

• At least one free thread table entry

• At least N free registers for every type, where N is the maximum number a thread can use,
e.g., on the Alpha, this means 32 free integer registers and 32 free floating-point registers.

5.8 Summary

In this section we outlined a protocol for running code with unknown resource requirements, on a
platform with possibly unknown resources availability. This was a critical requirement uncovered in
the previous phase of the project. The protocol involves using a function call as a fallback strategy
should not enough resources be available for a create. To this end, the create operation must fail
gracefully when resources cannot be allocated, and every thread that makes a function call must
be compiled with the same register layout. This solution is a last-effort fallback solution, as other
optimizations should be tried first, such as static analysis of the code combined with reserving entire
places to allow the compiler or run-time to guarantee that deadlock will not occur.

31

6 Report Summary

This report has described in detail the main areas of progress within Work Package 5, the porting
of operating system facilities to SVP and the Microgrid. The progress documented in this report
accounts for an extensive amount of work, but can be briefly summarised into the following key
areas:

Resource Allocation – the implementation of a fully-fledged resource allocation system for both
processing and memory resources.

Run-time Monitoring – extensive state and performance information available dynamically to
programs undergoing execution.

Input/Output – the investigation and implementation of both a software and hardware level
system to facilitate scalable I/O in SVP and the Microgrid

Deadlock Prevention – a hardware/software codesigned system to bypass the serious hurdle of
resource deadlock in SVP/Microgrid applications

Library Support – extensive implementation of standard library support for client applications

Together, the above work constitutes the solid foundation of the operating system features
required by the Microgrid as a processor for general purpose computation.

The subsequent appendices are included to support the work in this report and should be used
for additional information, particularly where directly specified in the body of this document.

32 REFERENCES

References

[1] Design principles for end-to-end multicore schedulers. In 2nd Workshop on Hot Topics in
Parallelism.

[2] Virtual organization support within a grid-wide operating system. IEEE Internet Computing,
12(2), 2008.

[3] Apple-CORE Description of Work, Annex I (Version 1.6), September 2009.

[4] Thomas Bernard, Clemens Grelck, Michael Hicks, Chris Jesshope, and Raphael Poss. Resource-
agnostic programming for many-core microgrids. In Proc. 4th Workshop on Highly Parallel
Processing on a Chip (HPPC 2010), Ischia - Naples, Italy, September 2010.

[5] R. Berrendorf, H. Ziegler, and B. Mohr. Pcl-the performance counter library: A common
interface to access hardware performance counters on microprocessors. Central Institute for
Applied Mathematics, Research Centre Jülich GmbH.

[6] S. Browne, J. Dongarra, N. Garner, K. London, and P. Mucci. A scalable cross-platform
infrastructure for application performance tuning using hardware counters. 2000.

[7] Matthew Burnside and Angelos D. Keromytis. High-speed I/O: the operating system as a
signalling mechanism. In NICELI ’03: Proceedings of the ACM SIGCOMM workshop on
Network-I/O convergence, pages 220–227, New York, NY, USA, 2003. ACM.

[8] HyperTransport Technology Consortium. HyperTransport I/O Link Specification. Technical
Document HTC20051222-0046-0026, July 2008.

[9] J. Dongarra, K. London, S. Moore, P. Mucci, and D. Terpstra. Using PAPI for hardware
performance monitoring on Linux systems.

[10] A. F. Harvey. DMA Fundamentals on Various PC Platforms. Application Note 011, National
Instruments, April 1991.

[11] G. Heiser, K. Elphinstone, J. Vochteloo, S. Russell, and J. Liedtke. The mungi single-address-
space operating system. Software?Practice and Experience, 28(9):901 – 928, 1998.

[12] Michael A. Hicks, Chris Jesshope, Mike Lankamp, Raphael Poss, and Michiel van Tol. Towards
a microgrid hardware i/o mechanism. SVP Note SVP31, University of Amsterdam, 2009.

[13] Michael A. Hicks, Michiel W. van Tol, and Chris R. Jesshope. Towards Scalable I/O on a Many-
core Architecture. In International Conference on Embedded Computer Systems: Architectures,
MOdeling and Simulation (SAMOS), pages 341–348. IEEE, July 2010.

[14] IBM. 709 data processing system. http://www-03.ibm.com/ibm/history/exhibits/
mainframe/mainframe_PP709.html.

[15] IBM. Ibm system/370 principles of operation, 1974.

[16] Chris Jesshope. A model for the design and programming of multi-cores. Advances in Parallel
Computing, High Performance Computing and Grids in Action(16):37–55, 2008.

[17] Chris Jesshope, Mike Lankamp, and Li Zhang. The Implementation of an SVP Many-core Pro-
cessor and the Evaluation of its Memory Architecture. ACM SIGARCH Computer Architecture
News, 37(2):38–45, 2009.

[18] Chris Jesshope, Jean-Marc Philippe, and Michiel van Tol. An architecture and protocol for the
management of resources in ubiquitous and heterogeneous systems based on the SVP model of
concurrency. In Embedded Computer Systems: Architectures, Modeling, and Simulation, pages
218–228, 2008.

http://www-03.ibm.com/ibm/history/exhibits/mainframe/mainframe_PP709.html
http://www-03.ibm.com/ibm/history/exhibits/mainframe/mainframe_PP709.html

33

[19] E. J. Koldinger, J. S. Chase, and S. J. Eggers. Architectural support for single address space
operating systems. In ASPLOS-V, pages 175 – 186, 1992.

[20] D. Lea and W. Gloger. A memory allocator, 2000.

[21] J. Masters, M. Lankamp, C. Jesshope, R. Poss, and E. Hielscher. Report on memory protection
in microthreaded processors. Deliverable D5.2, Apple-Core Project, December 2008.

[22] Joe Masters, Mike Lankamp, and Raphael Poss. Generalized i/o events for the microgrid. SVP
Note SVP21, University of Amsterdam, 2009.

[23] Joe Masters, Raphael Poss, Michiel W. van Tol, and Chris Jesshope. Generalized synchroniza-
tion in svp. SVP Note SVP20, University of Amsterdam, 2009.

[24] Andrei Matei. Towards adaptable parallel software – the Hydra runtime for SVP programs.
Master’s thesis, Free University of Amsterdam, 2010.

[25] Edmund B. Nightingale, Orion Hodson, Ross McIlroy, Chris Hawblitzel, and Galen Hunt.
Helios: heterogeneous multiprocessing with satellite kernels. In SOSP ’09: Proceedings of the
ACM SIGOPS 22nd symposium on Operating systems principles, pages 221–234, New York,
NY, USA, 2009. ACM.

[26] Raphael Poss. Resource-agnostic programming of microgrids. http://www.hppc-workshop.
org/HPPC10-Poss.pdf, September 2010.

[27] Fabian Scheler, Wanja Hofer, Benjamin Oechslein, Rudi Pfister, Wolfgang Schröder-Preikschat,
and Daniel Lohmann. Parallel, hardware-supported interrupt handling in an event-triggered
real-time operating system. In CASES ’09: Proceedings of the 2009 international conference on
Compilers, architecture, and synthesis for embedded systems, pages 167–174, New York, NY,
USA, 2009. ACM.

[28] PCI SIG. PCI Local Bus Specification Revision 2.3 MSI-X ECN. http://www.pcisig.com/
specifications/conventional/msi-x_ecn.pdf.

[29] James E. Thornton. The cdc 6600 project. Annals of the History of Computing, IEEE, 2(4):338
–348, oct.-dec. 1980.

[30] M. van Tol. Master’s thesis, University of Amsterdam, Amsterdam, the Netherlands, 2006.

[31] David Wentzlaff, Charles III Gruenwald, Nathan Beckmann, Kevin Modzelewski, Adam Belay,
Lamia Youseff, Jason Miller, and Anant Agarwal. A Unified Operating System for Clouds and
Manycore: fos. Technical Report MIT-CSAIL-TR-2009-059, Computer Science and Artificial
Intelligence Lab, MIT, November 2009.

[32] Mett Witchel, Josh Cates, and Krste Asanovic. Mondrian memory protection. In ASPLOS-X,
2002.

http://www.hppc-workshop.org/HPPC10-Poss.pdf
http://www.hppc-workshop.org/HPPC10-Poss.pdf
http://www.pcisig.com/specifications/conventional/msi-x_ecn.pdf
http://www.pcisig.com/specifications/conventional/msi-x_ecn.pdf

34 A SL LIBRARY: DYNAMIC PLACE ALLOCATION (TR)

A SL Library: dynamic place allocation (TR)

SL Library: dynamic place allocation
Key: sl7
Date: 2010-06-17
Status: Draft
Author: Joe Masters
Author: Raphael ’kena’ Poss
Author: Chris Jesshope
Source: svn+ssh://mike@mac-chris.science.uva.nl/Library/SVN/CSA/doc/notes/sl7.txt
Version: sl7.txt 3860 2010-06-17 21:44:02Z kena

Abstract This note documents the work on place allocation initially prototyped by Joe
Masters and later integrated as proof-of-concept in the SL toolchain.

Introduction / vocabulary

We identify the distinction between:

1. SVP place identifiers, the opaque 64 bits of data that are required and sufficient for the
delegation of SVP’s create action; and

2. place “identifiers” as opaque handles to a group of resources that is allocated from a
common pool, and whose allocation needs to be tracked by e.g. an operating system.

Whereas the former entity contains only the information required to perform a create operation,
the latter needs to embed the following extra information for use by programs and libraries:

• amount of parallelism (cores, family entries, thread entries, etc);

• whether the place is exclusive;

• optionally, whether the place is shared between multiple components, and other possible future
attributes.

This list of “place attributes” may be extended in the future, for example to embed topology
information such as the “cost distance” to other places.

For the sake of clarity, we will keep the name “place identifier” for the low-level entity used to
perform the create action; and introduce the term descriptor for the high-level entity which carries
the additional, software-level information. This information is expected to be stored in shared
memory, and a memory pointer to such a descriptor can be termed a handle to that descriptor.

Next to these concepts, we introduce the concept of SEP from the AETHER project. A SEP is
an abstraction of a “place manager”, i.e. a combination of:

• a dedicated set of resources,

• a coordinated internal state,

• services which provide allocation from the dedicated set to client components/threads.

By design SEPs can be stacked hierarchically by allocating a set of places from one level and
using it as a dedicated pool for the levels underneath. This is not discussed here, see Future
directions below.

35

Overview

We propose an implementation where the 64-bit SVP place identifier is an attribute of a place
descriptor. This implementation manages and allocates descriptors for programs, which then can
extract place identifiers from them for use in create actions.

Note

This can be opposed to e.g. an implementation which tracks descriptors only internally, and
instead hands out place identifiers to programs. In such an implementation it would be possible
to map back a place identifier to the descriptor for the purpose of answering queries about
the number of cores, owner, etc. (e.g. using a hash table). We choose to avoid this type
of implementation since the cost of such queries on the Microgrid seems higher than the two
memory loads required by the descriptor approach.

Management of descriptors is encapsulated to allow hierarchical definition of SEPs. We propose
the following 3 services as a starting point:

• place allocation, where programs request a place to a SEP and specify a policy for the alloca-
tion;

• place deallocation;

• as a mean to troubleshoot / illustrate the mechanisms and their uses in programs, a way to
print out the current allocations for a given SEP.

These services can be indicated by a combination of a place identifier (where the services should
be created as a thread family of one thread), a pointer to a thread function (the instructions to
perform the task) and an opaque data structure in memory (for internal use by the SEP), all of
which can be encapsulated behind a single address in memory.

Application programming interface

Programs making use of this implementation should include the standard SL header <svp/sep.h>.
After including this header the preprocessor macro SVP HAS SEP is set to a nonzero value if the

API described below is available.

Note

Programs should be written in such a way that the special place identifier PLACE DEFAULT is
used for creates whenever SVP HAS SEP indicates that place allocation is not available.

Data types

SVP place identifiers have the pervasive, opaque data type sl place t in SL. This is unchanged.
Place descriptors however are encapsulated in the type struct placeinfo, with at least the

following fields:

struct placeinfo {
sl place t pid; /* place identifier for creates */
sl place t soft pid; /* "soft" place identifier for creates */
uint16 t ncores; /* number of cores */
uint16 t nfamilies per core; /* FTEs / core */
uint16 t nthreads per core; /* TTEs / core */
bool shared; /* whether the place is used by multiple clients */
bool exclusive; /* whether the place is suitable for exclusive creates */

};

36 A SL LIBRARY: DYNAMIC PLACE ALLOCATION (TR)

Note

There may be additional data in memory appended for internal use by the SEP, and the
length of this additional data is not known to programs. Therefore programs cannot copy this
structure in memory and should instead copy pointers to it.

Note

The field pid contains a place identifier such that a create to that place always effectively
delegates the work to the target place, possibly waiting until the place becomes available. In
contrast, a delegate to soft pid may fail if the target place is busy, and allow the program
to inline the computation instead.

SEP encapsulation

SEPs are encapsulated in the type struct SEP, defined with at least the following fields (TC
syntax):

struct SEP {
/* place identifier where to place SEP calls */
sl place t sep place;

/* thread function for allocation */
thread void (*sep alloc)(struct SEP*,

long policy,
shared struct placeinfo* result);

/* thread function for deallocation */
thread void (*sep free)(struct SEP*,

struct placeinfo*);

/* thread function for status */
thread void (*sep dump info)(struct SEP*);

};

This defines a data structure in memory whose first field is a place identifier, and the subsequent
fields pointers to thread functions for respectively allocation, deallocation, and (optionally) console
output of troubleshooting information.

Note

As for struct placeinfo, here may be additional data in memory appended for internal
use by the SEP, and the length of this additional data is not known to programs. Therefore
programs cannot copy this structure in memory and should instead copy pointers to it.

Root SEP

When the environment is set up, a pointer to the root SEP is accessibly by programs and declared
in <svp/sep.h> as follows:

extern struct SEP *root sep;

Allocation policies

Allocation policies are specified using the OR combination of the following specifier:

• specifiers about the number of cores (ORed together with the desired number of cores):

37

– SAL MIN: the provided place must have at least the number of cores specified;
– SAL MAX: the provided place must have at most the number of cores specified;
– SAL EXACT: the provided place must have exactly the number of cores specified;
– SAL DONTCARE: any place size will do.

• exclusion: SAL EXCLUSIVE;

• agreement to sharing with other requesters: SAL SHARED.

Note

it is expected that applications will tolerate sharing for exclusive places, where work is expected
to terminate within a finite amount of time; this contrasts with non-exclusive places where
there may be performance/availability requirements, in which case sharing is undesirable.

Performing SEP calls

The actual thread function to perform services is dependent on the SEP being used: the function
pointer is stored in the SEP data structure. However, since such SEP “method implementations”
can be reused across SEPs, they also take as argument a pointer to the SEP being invoked.1

Also, as the services coordinate around some internal state, all “calls” (creates) to the API must
be performed using the same place identifier, using exclusion. This place identifier is available as
the first field of the SEP abstraction.

Finally, all services should be invoked by creating a family of a single thread.
Therefore, all calls to SEP services look like the following (TC syntax):

create(;sep->sep place;;;;;) /* exclusive */
sep->SERVICE(= sep, ARGS...);

sync();

or, using SL:

sl create(,sep->sep place,,,,, sl exclusive,
*sep->SERVICE,
sl glparm(struct SEP*, , sep),
ARGS...);

sl sync();

Place allocation

The allocation method sep alloc takes a policy as input, and returns a handle through its shared
argument.

The shared argument can be initialized to any value.
If the allocation fails, the returned handle is set to 0.
Example use (TC syntax):

create(;sep->sep place;;;;;) /* exclusive */
sep->sep alloc(= sep, SAL MIN | 4, p = 0);

sync();
if (p == 0)

die("place allocation failed!");

1 this is much like the this pointer is passed implicitely as an argument to object methods in C++.

38 A SL LIBRARY: DYNAMIC PLACE ALLOCATION (TR)

In this example, the client program creates a family of one thread running exclusively at the
place indicated by the sep place field in the data structure pointed to by sep; provides the pointer
sep also as first global argument; indicates the SAL MIN policy with a requested number of 4 cores;
and defines a shared thread argument p to hold the returned handle, initialized to 0. After synchro-
nization, the handle is tested to check that the allocation succeeded.

This code is equivalent to the following SL syntax:

sl create(,sep->sep place,,,,, sl exclusive,
*sep->sep alloc,
sl glarg(struct SEP*, , sep),
sl glarg(unsigned long, , SAL MIN | 4),
sl sharg(struct placeinfo*, p, 0));

sl sync();
if (sl geta(p) == 0)

die("place allocation failed!");

Place de-allocation

The method sep free deallocates a place identified by a handle.
Example use:

create(;sep->sep place;;;;;) /* exclusive */
sep->sep free(= sep, = p);

sync();

Same code in SL:

sl create(,sep->sep place,,,,,sl exclusive,
*sep->sep free,
sl glarg(struct SEP*, , sep),
sl glarg(struct placeinfo*, , p));

sl sync();

Status information

The method sep dump info prints information about the places managed by the SEP on the stan-
dard console output. It does not change the state of the SEP.

Implementation notes

The prototype (proof of concept) implementation provides a root SEP which buckets the hardware
places by size; and then allocates by searching the buckets nearest to the size specified in the order
specified by the policy.

No assumption is made that places have sizes that are powers of two, so the allocation algorithm
must often scan through empty buckets up to (or down to) the next available size when an exact
match is not found.

Future directions

The current implementation does not provide the actual service for SEP derivation (making a new
SEP out of a subset of allocated places).

It seems also interesting to identify the “owner” of places during allocation for debugging pur-
poses, and later for security purposes.

39

B Asynchronous simulation monitoring (TR)

Asynchronous simulation monitoring
Key: mgsim9
Author: Raphael ’kena’ Poss
Date: 2010-09-02
Status: Draft
Version: mgsim9.txt 4027 2010-09-02 12:48:12Z kena
Source: svn+ssh://mike@mac-chris.science.uva.nl/Library/SVN/CSA/doc/notes/mgsim9.txt

Abstract This note describes the simulation monitoring framework introduced in summer
2010.

Overview

The diagram above summarizes the framework:

• the Microgrid simulator is augmented with a monitor thread which reads the simulation state
asynchronously and redirects the information outside of the simulation in a binary format;

• a new tool readtrace is introduced, which connects a stream parser with a user-provided
synthesis engine. The stream parser reads the binary records produced by the simulation
monitor and passes them to the synthesis engine to be transformed.

The synthesis engine should then produce textual, tabulated decimal numbers suitable for input
by a diagramming tool such as GNUplot.

Extra features

The following features have guided the design:

• the samples can be piped through a FIFO buffer; this avoids a large amount of storage for
traces when the synthesis extracts less information than is generated by the monitor thread
(e.g. reduction of variables across all cores or dynamic visualization with a sliding window).

40 B ASYNCHRONOUS SIMULATION MONITORING (TR)

• any slowdown in the synthesis engine or stream parser will back propagate to the monitor
thread and cause a reduction of the sampling rate without any accumulation of records in
transit.

Monitor thread

The monitor thread can be enabled on a per-simulation basis. When it is enabled, the following
occurs:

• a separate thread of execution is created to run the monitor before the simulation starts;

• whenever the simulation starts or stops, the monitor is notified to start/stop collecting samples;

• while sample collection is active, the monitor periodically collects all selected variables and
sends them to the monitor output channel in raw binary format.

If the output channel is blocked (for instance because its buffer is full) the monitor thread
suspends without impacting the simulation.

Simulation variables and selections

The Microgrid simulator has been modified to expose many variables used internally by the simu-
lation. Although these variables are internal, their values also describe the state of the simulated
Microgrid. These variables include the cycle counter, thead and family allocations, arbitration
delays on each arbitrated port, cache and memory information, etc.

The variables are placed in a namespace that reflect the internal structure of the simulator. The
list of all available variable names depends on the Microgrid configuration and can be queried using
either:

• mgsim -n -D

• slr -Mv list

• in the interactive simulator prompt, with the command “samplevars”.

Individual variables can be referenced by their full name. Typically, groups of variables are
selected instead, using a pattern with the same syntax as the Unix shell. For example, the pattern
cpu.threads.maxalloc selects the high water mark for the number of allocated threads per core
across all cores.

Note

In Unix shell patterns, ? matches any single character, and * matches any sequence (including
no character). Specific classes of characters are matched by [...]. See the sh(1) manual
page for details.

Monitor configuration

mgsim command line slr command line Description
-m -M Enable the monitor thread.
-o MonitorOutputFile=FILE -Mo FILE Output sample records to FILE

(should be a FIFO, defaults to
mgtrace.out)

-o MonitorMetadataFile=FILE -Md FILE Output the trace metadata to
FILE (defaults to mgtrace.md)

-o MonitorSampleDelay=SECS -Mr SECS Wait SECS seconds between each
sample (defaults to 0.001s).

41

-o MonitorSampleVariables=PATTERNS-Mv PATTERNS Select all variables whose names
match any of the PATTERNS for
monitoring.

-D -Mv list List all available simulation vari-
ables.

The default selection pattern is *.cpu*.pipeline.execute.op,*.cpu*.pipeline.execute.flop.
Irrespective of the selection, the special variable kernel.cycle (cycle counter) is always sampled

two times in each record, one before and one after all other variables are sampled. This allows to
estimate “how long” the sampling itself has taken in terms of simulation time.

Monitor output

The monitor thread outputs data to two separate streams: the metadata and the record streams.
The metadata is output once before the simulation starts. It consists of a textual output which

describes the simulation configuration as well as the list of variables being sampled. Its format is
described in Metadata format below.

The records are output periodically during the simulation. All records have the same fixed with;
they consist of the following data in their native machine representation concatenated together:

a Unix timestamp (absolute time) at the point the sampling of this record started;
a Unix timestamp at the point the sampling of this record ended;

the cycle counter (simulated time) sampled before all other variables;

each sampled variable;

the cycle counter sampled after all other variables.
The width (in bytes) and the type (integer/float) of each variable in a record is indicated in the

metadata.

Examples

$ slr -M 10threads

Execute the program 10threads with monitoring. The metadata is output to mgtrace.md
and the records to mgtrace.out. Each sample contains the cycle counter and the counts of all
instructions executed and floating point operations issued for all cores.

$ slr -Mv ’*.threads.maxalloc’ fibrec

Execute the program fibrec with monitoring (-Mv implies -M). Each sample contains the cycle
counter and the high water mark of core thread allocations per core for all cores.

$ mkfifo rec-out; slr -Mo rec-out fibrec

Execute the program fibrec with monitoring. The records are output to a FIFO. The monitor
is suspended until another process reads from the FIFO, but the simulation is unaffected.

Trace parsing and result synthesis

A helper program readtrace is provided to read the binary record stream, synthesize results and
produce textual output stream.

This program operates as follows:

42 B ASYNCHRONOUS SIMULATION MONITORING (TR)

the metadata is read to obtain the width of records and the type and width of each sampled
simulation variable;
a synthesis engine code (written in Python, user-specified) is loaded and byte-compiled;

the record stream is opened, each record is read in turn, transformed into a Python tuple and
provided to the synthesis engine;

at the end of the input, the program reports statistics about the processing speed.
The synthesis engine is in charge of extracting the variables of interest and synthetising abstract

results from them before performing a textual output.

Synthesis engines

Synthesis engines are specified using a single Python source code file. Engines should be structured
as follows:

<code executed once>
for i in input:

<code executed for each record>
tabulate(variables...)

The variable input is a generator predefined by the stream parser that produces the data records
as Python tuples. The function tabulate() formats its arguments into columns.

To access individual counters in each record, the namespace from the metadata is exposed in
Python as variables that hold indices into the record tuple. For example, the following engine
extracts the wall clock time and the simulated time as two columns:

for i in input:
tabulate(i[wallclock.sec] + .000001 * i[wallclock.usec],

i[kernel.cycle])

The following entities are predefined:

input The generator of input records.

zerorec A tuple of the same width as records, filled with zeros.

mgconf A namespace populated with the Microgrid configuration parameters. The list of all con-
figuration names can be obtained using print dir(mgconf).

select(PATTERN) Function: builds a list with the indices of all simulation varibles whose names
match PATTERN. This can then be used e.g. with a comprehension to perform reductions. For
example:

sel = select(’*.threads.maxalloc’)
for i in input:

maxall = sum((i[x] for x in sel))
tabulate(i[kernel.cycle], maxall)

Note

The cost of select() may be high. When possible, save the result in the initialization code
at the start.

window(N) Constructor: defines a circular buffer of N entries. Entries can be inserted using the
method append(). This can be used e.g. to perform sliding averages as follows:

43

acw = window(100)
sel = select(’*.threads.curalloc’)
for i in input:

nactive = sum((1 for x in sel if i[x] != 0))
acw.append(nactive)

avg nactive = sum(acw) / len(acw)
tabulate(i[kernel.cycle], avg nactive)

When no engine is specified, the following default code is used:

wcstart = None

for i in input:
wall clock time at start of sample
wt1 = i[wallclock.sec] + .000001*i[wallclock.usec]
wall clock time at end of sample
wt2 = i[wallclock.sec] + .000001*i[wallclock.usec]

simulated time at start of sample
st1 = i[kernel.cycle]
simulated time at end of sample
st2 = i[kernel.cycle]

compute "middle" values:
wc = (wt1+wt2)/2.
st = (st1+st2)/2.

keep track of the initial wall clock time
if wcstart is None:

wcstart = wc-0.000001

prepend the times to the record data
tabulate([wc-wcstart, st] + list(i))

Synthesis recipes

The following snippets can be used to synthetise results not directly expressed in simulation vari-
ables:

• iprev = zerorec
for i in input:

<compute, tabulate>
iprev = i

Save each record for the next iteration in iprev. This allows to perform differentials.

• iprev = zerorec
sel = select(’*.execute.op’)
for i in input:

ops = sum((i[x]-iprev[x] for x in sel))
tabulate(i[kernel.cycle], ops)
iprev = i

Count the number of instructions executed by all cores between each sample point.

44 B ASYNCHRONOUS SIMULATION MONITORING (TR)

• iprev = zerorec
sel = select(’*.execute.op’)
for i in input:

activecores = sum((1 for x in sel if (i[x]-iprev[x]) != 0))
tabulate(i[kernel.cycle], activecores)
iprev = i

Compute the number of active cores at each sampling point, by considering which cores have
actually executed instructions between each sample.

• iprev = zerorec
stprev = 0
sel = select(’*.execute.op’)
r = mgconf.masterfreq / mgconf.corefreq
for i in input:

ops = sum((i[x]-iprev[x] for x in sel))
activecores = sum((1 for x in sel if (i[x]-iprev[x]) != 0))
st = i[kernel.cycle] / r
slots = activecores * (st - stprev)
if slots == 0: continue
pl eff = ops / float(slots)
tabulate(i[kernel.cycle], pl eff)
iprev = i
stprev = st

Compute the pipeline efficiency at each sample, as the ratio between the number of instructions
executed and the number of pipeline slots available between each sample.

• iprev = zerorec
stprev = 0
sel = select(’*.execute.op’)
effw = window(100)
r = mgconf.masterfreq / mgconf.corefreq
for i in inputs:

ops = sum((i[x]-iprev[x] for x in sel))
activecores = sum((1 for x in sel if (i[x]-iprev[x]) != 0))
st = i[kernel.cycle] / r
slots = activecores * (st - stprev)
if slots == 0: continue
effw.append(ops / float(slots))
tabulate(i[kernel.cycle], sum(effw)/len(effw))
iprev = i
stprev = st

Same as above, but the pipeline efficiency is averaged across a sliding window of 100 samples.

Producing diagrams

The synthesis engine emits its output as pure tabulated numerical output. The exploitation of this
data by plotting tools is left as an exercise to the reader.

Future work

This framework expresses a loose coupling between the key components: the format of the synthesis
output is dependent on the code of the synthesis engine; and the validity of a synthesis engine for

45

a given simulation trace is dependent on which variables it uses and which variables have been
selected by monitoring in the simulator.

At the time of this writing, the three aspects (variable selection, choice of synthesis engine,
data exploitation) must be configured separately. Care is thus required to ensure that they are
compatible, otherwise errors can occur or results can become meaningless.

As future research it may be interesting to design a front-end tool, possibly in the form of a
graphical user interface, that drives both the simulation and the synthesis.

Metadata format

The record metadata consists of one or more sections, each using the following syntax:

identifier : [text-words...]

[text-lines...]

That is, a section starts with #, then an identifier which uniquely identifies the section, then a
colon, then an optional sequence of words separated by spaces, then a newline character, then an
optional sequence of text lines each terminated by a newline character.

The following sections are mandatory:

• “varinfo: N”: indicates that each record in the record stream contains information for N
simulation variables. The section then contains N additional lines of text that describe the
width and type of each variable;

• “recwidth: N”: indicates that each record is N bytes wide. No additional line of text is
present;

• “tv sizes: A B C”: indicates that struct timeval (for Unix timestamps) has a width of
C bytes, that its field tv sec is A bytes wide and that its field tv usec is B bytes wide. No
additional line of text is present.

The following sections are optional:

• “date: DATETIME”: indicates when the simulation started;

• “generator: STRING”: identifies the simulator;

• “host: STRING”: indicates on which host the simulation was run;

• “program:”: indicates the name of the program executed on the Microgrid. A single additional
line of text contains the program name.

• “inputs: N”: indicates that N input files where loaded in the simulated memory prior to
program startup. The section then contains N additional lines of text each containing the
name of an input file.

• confwords: N: describes the Microgrid configuration. The section then contains one addi-
tional line of text, within which N configuration words are expressed.

46 C SL LIBRARY: PERFORMANCE COUNTERS (TR)

C SL Library: performance counters (TR)

SL Library: performance counters
Key: sl8
Date: 2009-11-18
Status: Draft
Author: Raphael ’kena’ Poss
Author: Andrei Matei
Source: svn+ssh://mike@mac-chris.science.uva.nl/Library/SVN/CSA/doc/notes/sl8.txt
Version: sl8.txt 3088 2009-11-18 13:54:04Z kena

Abstract This note documents an interface to access low-level global performance counters
from SL programs.

Introduction

We need performance counters for benchmarking.
Benchmarks can have the following structure:

declare samples[N];
do I .. N: /* outer loop */

before = get counter();
do work();
samples[i] = get counter() - before;

do I .. N:
report(samples[i])

This approach is valid for time, global cache activity, global number of instructions, etc. We can
thus try to capture this approach in an API in a way friendly to the later addition of new counters.

Overview of the low level interface

For accessing absolute time with a fine granularity, C99 defines the clock() function as an “ab-
stract measurement of execution time from an unspecified start point” and the symbolic constant
CLOCKS PER SEC, expected to provide sub-second precision. This is also supported in SL, declared
in <ctime.h>.

Note

On the Microgrid simulator C’s clock() is currently implemented to return the cycle counter
and CLOCKS PER SEC is set to an arbitrary value of 10e9 to reflect the estimated 1GHz clock
rate. Also, as an extension the C function definition is complemented by a macro definition
of the same name which expands to an efficient sampling of the cycle counter instead of
performing a function call. (The C function can still be reached by undefining the macro
and/or parenthesizing the name clock appropriately.)

Note

The get cycles() API “historically” available in SL (dating from before the authoring of
this note) is now deprecated in favor of C’s clock() which has equivalent semantics and a
well-defined standard interface.

For accessing additional counters, the following additional API is available from <svp/perf.h>:

• mtperf sample, which efficiently samples all the available counters and stores them in an
array;

47

• mtperf sample1, which efficiently returns the current value of one of the counters;

• mtperf report diffs, which takes two arrays previously filled with mtperf sample and re-
ports their difference in a consistent format on the console output.

Low level interface details

The definitions discussed below are available after including <svp/perf.h>.

Data type

All counters have the data type counter t. This is an integer type.

Available counters

The number of available counters (for the purpose of allocating arrays of counter t) is available
via the compile-time constant MTPERF NCOUNTERS.

Each counter is identified by a preprocessor macro name:

• the preprocessor macor is defined only if the corresponding counter is available;

• the macro is used in conjunction with mtperf sample and mtperf sample1 as discussed below.

The following table lists the counters available at the time of this writing; this list is non
exhaustive and may/will be extended in the future:

Macro name Description
MTPERF CLOCKS Number of clock ticks. Equivalent to C’s clock().
MTPERF EXECUTED INSNS Total number of completed instructions.
MTPERF ISSUED FP INSNS Total number of issued floating-point operations.

Sampling a single counter

The following function-like service is available:

counter t mtperf sample1(int counter);

A call to mtperf sample1 returns the current value for the specified counter (one of the symbolic
names defined above).

For example:

counter t c1 = mtperf sample1(MTPERF CLOCKS);
do something();
counter t c2 = mtperf sample1(MTPERF CLOCKS);

printf("clocks: %d\n", c2 - c1);

Sampling all counters

The following function-like service is available:

void mtperf sample(counter t *counters);

A call to mtperf sample will fill the array at the specified address with the current values of
existing counters.

If the array has a size smaller than MTPERF NCOUNTERS, the behavior is undefined.

48 C SL LIBRARY: PERFORMANCE COUNTERS (TR)

After the mtperf sample call completes, each individual counter can be accessed by indexing
the array by the name of the counter.

For example:

counter t ct[2][MTPERF NCOUNTERS];

mtperf sample(ct[0]);
do something();
mtperf sample(ct[1]);

printf("clocks: %d\n", ct[1][MTPERF CLOCKS] - ct[0][MTPERF CLOCKS]);

The mtperf sample service is intended to be more efficient than using mtperf sample1 repeat-
edly to sample every counter, although one use of mtperf sample is not necessarily as efficient as
one use mtperf sample1 to sample a single counter.

Reporting differences

The following function is declared:

void mtperf report diffs(counter t *before, counter t *after, int flags);

When called, this service will print all the counter differences between the second and the first
array. The extra argument flags determines the format of the output as a bitwise OR of the
following flags:

• REPORT RAW: the differences are output standalone, one per line of output.

• REPORT CSV: the differences are output as a row of values suitable for input in a spreadsheet.
When using this format, the additional flags can be ORed together:

– CSV SEP(C): use C as a separator between columns (default is a comma)

– CSV INCLUDE HEADER: also print the counter names as column headers

• REPORT FIBRE: the differences are output as a Fibre array.

• REPORT STREAM(N): the report is printed on the stream N (1 = standard output, 2 = standard
error, default is 1).

New formats may be added in the future.

Overview of the higher-level interface

For accessing additional counters, the following additional API is available from <svp/perf.h>:

• struct s interval, item which can be manipulated by the functions below;

• mtperf start interval, which starts a measurement “section” and optionally tags it with a
string and/or a number;

• mtperf finish interval, which ends the matching interval;

• mtperf report intervals, which takes an array of intervals and reports the metrics in a
consistent format;

• mtperf alloc intervals, which allocates an array of type struct s interval;

• mtperf free intervals, which deallocates an array of intervals;

49

Higher-level interface details

The following services are defined:

• void mtperf start interval(struct s interval *ivs, size t p, int numtag, const char
*strtag)

Begins a new interval at position p in the array pointed to by ivs. If strtag is non-null, it
is used to annotate the interval textually. If numtag is positive or zero, it is used to annotate
the interval numerically. (both strtag and numtag can be provided)

• void mtperf start interval(struct s interval *ivs, size t p)

Ends the interval at position p in the array pointed to by ivs.

• void mtperf report intervals(struct s interval *ivs, size t n, int flags)

Produces a textual report of the n first intervals in the array pointed to by ivs. The flags are
defined in the same way as mtperf report diffs documented in Reporting differences above.

In the special case of Fibre, the output is split in two sections:

– in a first section delimited by the text “### begin intervals” and “### end intervals”,
the metrics are reported;

– in a second section delimited by the text “### begin descriptions” and “### end
descriptions”, the interval names and counter names are reported.

• struct s interval *mtperf alloc intervals(size t n)

Returns calloc(n, sizeof(struct s interval)).

• void mtperf free intervals(struct s interval *ivs)

Performs free(ivs).

• void mtperf empty interval(struct s interval *ivs, size t p, int numtag, const char
*strtag)

Clears the interval at position p in the array pointed to by ivs. Calling this function is not
required on intervals allocated with calloc or mtperf alloc intervals above, but it allows
to attach a tag to an interval otherwise remaining empty.

Example for the low level interface

The following program iterates a benchmark a number of times specified externally, and reports the
results at the end:

#include <svp/perf.h>
#include <svp/slr.h>

slr decl(slr var(unsigned, L, "outer iteration count"));

sl def(t main, void)
{

unsigned i;

// get iteration count from environment
unsigned L = slr get(L)[0];

// allocate an array of arrays of counters

50 C SL LIBRARY: PERFORMANCE COUNTERS (TR)

counter t counters[L+1][MTPERF NCOUNTERS];

// perfom the benchmark, and sample counters at
// each outer iteration
mtperf sample(counters[0]);
for (i = 1; i <= L; ++i)
{

do benchmark();
mtperf sample(counters[i]);

}

// after benchmark completes, report counts
for (i = 1; i <= L; ++i)

mtperf report diffs(counters[i-1], counters[i], 0);
}
sl enddef

Example for the high level interface

The following program iterates a benchmark 3 times, and reports the results at the end:

#include <svp/perf.h>

sl def(t main, void)
{

unsigned i;
size t p = 0;

// some arbitrary iteration count
unsigned L = 3;

// allocate L intervals
struct s interval *ivs = mtperf alloc intervals(L + 2);

// benchmark initialization
mtperf start interval(ivs, p, -1, "init");
do initialize();
mtperf finish interval(ivs, p++);

// perfom the benchmark, and sample counters at
// each outer iteration
for (i = 0; i < L; ++i)
{

mtperf start interval(ivs, p, i, "work");
do benchmark();
mtperf finish interval(ivs, p++);

}

// benchmark teardown
mtperf start interval(ivs, p, -1, "teardown");
do teardown();
mtperf finish interval(ivs, p++);

// after benchmark completes, report counts in Fibre format

51

mtperf report intervals(ivs, p, REPORT FIBRE|FIBRE PAD(7));
}
sl enddef

A possible output for this program would be:

begin intervals
[1,3: 55 7 0]
[1,3: 55 7 0]
[1,3: 19 7 0]
[1,3: 19 7 0]
[1,3: 12 7 0]
end intervals
begin descriptions
[1,7: "init" "0 work" "1 work" "2 work" "teardown" "" ""]
[1,7: "clocks" "n exec insns" "n issued flops" "" "" "" ""]
end descriptions

52 D GENERALIZED I/O EVENTS FOR THE MICROGRID (TR)

D Generalized I/O events for the Microgrid (TR)

Generalized I/O events for the Microgrid
[now partially superseded]

Key: svp21
Author: Joe Masters
Author: Mike Lankamp
Author: Raphael “kena” Poss
Date: 2008-04-14
Status: Draft
Source: svn+ssh://mike@mac-chris.science.uva.nl/Library/SVN/CSA/doc/notes/svp21.txt
Version: svp21.txt 1972 2009-04-17 00:02:45Z kena

Abstract In this note we propose two approaches to implement I/O event signalling on the
Microgrid.

Introduction

We connect the Microgrid to a generic I/O device1 which delivers interrupts to the Microgrid. The
hardware interface between the device and the Microgrid is present on specific cores hereafter named
“I/O cores”.2 We focus here on the way the programs running on the Microgrid can wait on external
I/O events. The way programs can read and write data to devices is outside of the scope of this
document.3

We propose two approaches which can be used in conjunction, although it appears after the
initial research phase that only the first approach can be successfully implemented.

We assume the availability of exclusive places (cf. [svp24]).

Common concepts

On the I/O core we define a subset of general-purpose integer registers to be I/O registers. Each
of these registers is connected to an external interrupt channel. The state of these registers is
dependent on threads waiting on them and interrupt delivery as follows:

• an I/O register is empty when no threads are waiting on it. If an interrupt is delivered for
the channel while the register is empty, the interrupt is stalled (either buffered, queued or
latched). From that point the interrupt is said to be “pending”.

• like for all registers on the Microgrid architecture, an I/O register is waiting when at least
one thread is waiting on it:

– when one or more threads start to wait on an I/O register and no interrupt is currently
pending for the channel, the threads are suspended and the register becomes “waiting”;

1 this can be: a serial interface, a network interface, etc. Genericity can be achieved by connecting
a device through which multiple channels can be multiplexed.
2 whether I/O cores should be specialized members of the Microgrid or whether I/O can happen
symmetrically on all cores is a matter of configuration and manufacturing costs; it is not discussed
here.
3 we assume here that data exchange and data acknowledgement can be implemented via traditional
means (memory-mapped, special ports, special address space, etc). This will be discussed in a
separate note.

53

– when one or more threads are suspended and the register is waiting, and then an interrupt
is delivered, the threads currently waiting on the register are woken up;

– when one or more threads start to wait on an I/O register and an interrupt is currently
pending for the channel, the threads are not suspended.

• as a difference with the usual register behavior in the Microgrid, we propose that a waiting
register is marked “empty” when an interrupt is delivered.

Continuation-based I/O

In this approach each I/O register is waited upon at most one server thread whose role is to wait
for events and deliver them to clients.

The overall process goes as follows:

• client applications register as listeners to I/O events;

• the server threads wait for events and signals the client applications when the event is delivered
using continuation families (cf [svp26]).

In this approach, when looking at the concurrency tree defined by the parent-child relationship
between families, the families of threads created to handle incoming events have the server threads
as ancestor. There is no parent-child link between the other families in the application process and
the families executed to handle events.

Overview diagram

The following figure illustrates this approach.

Common items

This mechanism relies on a shared data structure for each I/O event, representing a queue where each
node contains create parameters for a continuation family: pointer to code, optionally shared/global
arguments, optionally index range parameters.

All accesses to this shared data structure as described below is done on an exclusive place
mutually known by the clients and the server threads. When handling multiple I/O event channels,
each event channel is associated to one such data structure, which itself must be accessed via at
most one exclusive place; however data structures for distinct I/O channels can be accessed using
distinct exclusive places to achieve additional concurrency.

Registration of a client application as a listener

We propose two registration mechanisms:

• for asynchronous event delivery, a thread in a client application can queue an event handling
continuation in the form of a pointer to code, data and protection domain to be created
as a continuation family by the server when the event happens; the client thread can then
concurrently continue to execute and terminate after it has registered its continuation and
before the event is signalled. This mechanism is similar to registering a callback on a legacy
system.

• for synchronous event delivery, a thread in a client application creates a sear4 which queues
to the server, as a event handling continuation, a thread code that kill the sear; then the sear
suspends, so that its parent waiting for termination of the sear suspends as well. When the
event is delivered the continuation kills the sear, allowing the client thread to resume.

54 D GENERALIZED I/O EVENTS FOR THE MICROGRID (TR)

Figure 9: Overview of the continuation-based I/O event handling mechanism

55

Waking up clients by the server thread

From the server thread perspective, we describe the behavior as the following sequential loop:

the server thread waits on the I/O register corresponding to the event being listened to by
the clients;
when the interrupt is delivered, the server thread wakes up, then creates a server-side infinite
continuation family at the exclusive place;

then because this child family is a continuation, the server thread does not need to wait for
its termination and can start waiting for the next event.

The server-side infinite continuation family scans the listener queue for the event, and then in
each thread of this family the individual listeners are handled as follows: a client-side continuation
family is created using the pointer to code, data and protection domain registered by the client in
the queue.

Cooperative I/O

Warning

This approach is described here for “historical” purposes, but seems to be conceptually faulty.

In this approach each I/O register is waited upon by one or more I/O peer threads synchronously
and simultaneously waited upon by multiple client applications: the client application threads are
waiting for the I/O peer threads to terminate using the regular SVP “synchronization on termina-
tion” mechanism.

The overall process goes as follows:

• each client application interested in an event creates a driver family of one thread which then
waits for events by creating short-lived threads at the I/O core;

• when an interrupt is delivered, all the waiting threads are resumed, terminate, the driver
families resume and then handle the event and return the requested information to the client
application.

In this approach, when looking at the concurrency tree defined by the parent-child relationship
between families, the families of threads created to handle incoming events have another thread in
the application process as an ancestor.

Function of a single I/O thread

All threads waiting on an I/O channel are cooperatively responsible for buffering input events. This
is because some threads will see events delivered in which their “owner” client application is not
interested.

As a result, for each event delivered a waiting thread needs to perform the following:

1. check an event buffer and see if there is an event already delivered;

2. if there is an event already there and the event is “interesting” to the waiting thread,
simply return it to the parent client application and terminate; or

3. wait on the next event;

4. put the new incoming event on the buffer; if it is “interesting” to the waiting thread
return it to the parent client application.

4 as defined in [svp20] : a family that indefinitely suspends, e.g. a family of one thread waiting on
a shared thread argument that is not provided by the parent.

56 D GENERALIZED I/O EVENTS FOR THE MICROGRID (TR)

Issues remaining to be resolved

This second approach requires exclusive access to the buffer; care must be taken to ensure both
proper atomic access to the buffer data, and proper concurrent access to the I/O register. After a
thorough analysis, a workable, efficient and correct exclusion protocol has not been found yet.

Mapping between interrupts and I/O threads

The two approaches described above assume that the I/O registers are visible in the local thread
context of the I/O threads. For this purpose we propose the following two mapping mechanisms:

• one mechanism where I/O registers are mapped automatically in the I/O threads as global
thread parameters; this uses a similar mechanism as the mapping of global thread arguments
between a parent thread and a child family, as described below;

• another mechanism where an extra instruction in the ISA is provided to threads to establish
a connection between an arbitrary interrupt line and an arbitrary register in the register file;
this requires an extra instruction and an on-chip lookup table.

Automatic mapping

An I/O family is marked as such by a flag set by its parent thread at the point of create. When
the create request is handled in the I/O core, the special mapping occurs when the flag is set.

The mapping connects a subset of the thread register window of the newly created thread to
some subset of the I/O registers. For example, we can define that the N first global registers for
the newly created thread are mapped to the N I/O registers connected on the core to interrupts (N
<= 31).

This requires a specialized on-chip thread creation process for I/O threads.

Explicit mapping

In this scheme the threads are allocated “as usual” on the I/O core (using the same thread creation
process as on other SVP cores). While a thread is running, it can execute an “I/O map” instruction.

This instruction takes as input an arbitrary register specifier taken from the local register window
of the thread and an arbitrary I/O channel identifier. It updates a lookup table on the core that
connects the absolute register offset of the specified register in the register file to the interrupt line
corresponding to the specified I/O channel.

After the the thread has established the mapping it can enter a loop of waiting on the event
register and handling the delivery to client applications.

By software convention we can define that the driver code will establish a one-to-one relationship
between registers and interrupt lines.

Glossary of terms for I/O events

client application Collection of related families that are “interested” in receiving I/O events.

client-side continuation family / event handling continuation Family created by the server
thread using the “continuation create” mechanism when an I/O event occurs, using continu-
ation information previously registered by a client application.

I/O core Core where some integer registers are configured as I/O registers.

I/O register Register whose state is linked both to the threads waiting on it and to the state of
an external I/O interrupt line.

server thread / server family Family of one thread running hardware driver code on an I/O
core.

57

server-side infinite continuation family Family of thread created as a continuation by the
server thread to concurrently create client-side handler continuations while the server thread
can start waiting for the next event.

asynchronous event delivery Occurs when the handling of an event in an application is done
independently from the thread that registered the continuation handler for the event.

synchronous event delivery Occurs when an application thread suspends until the event it is
listening to is delivered.

58 E TOWARDS A MICROGRID HARDWARE I/O MECHANISM (TR)

E Towards a Microgrid Hardware I/O Mechanism (TR)

Towards a Microgrid Hardware I/O Mechanism
[now partially superseded]

Key: svp31
Author: Michael A. Hicks
Author: Chris Jesshope
Author: Mike Lankamp
Author: Raphael “kena” Poss
Author: Michiel van Tol
Date: 2009-12-05
Status: Draft
Replaces: svp22
Source: svn+ssh://mike@mac-chris.science.uva.nl/Library/SVN/CSA/doc/notes/svp31.txt
Version: svp31.txt 3927 2009-12-17 00:32:59Z kena

Introduction

In this document we propose a general architecture-level schematic for external device I/O on the
Microgrid, conforming with the direction set out in [svp23] . It is designed to bypass the delay of
main memory and enhance throughput for on-chip parallel execution.

The proposed implementation uses dedicated ’I/O Cores’, to which extremely lightweight device
driver threads are delegated, to receive interrupts and communicate with devices over a high speed
bus. The behaviour of components beyond this I/O bus is not detailed in this document. A bus
interface component exists on each I/O core and serves to communicate control through registers
and data directly to the on-chip COMA.

This document does not focus directly on the software level I/O protocols discussed in [svp21] ,
but is intended to be relatively compatible with those methods. Note [svp22] is made obsolete by
the outline proposed here.

Architecture Level Description

In this model (Figure 1), the Microgrid communicates with I/O devices through a high speed packet
bus, proposed here as a ’HyperTransport-like bus’. This communication can only take place on
special hardware I/O cores. These cores implement a special register file which contains designated
control registers in each thread context. These registers are used to control the Bus Interface, in
the form of a channel number and data packet pointer and size. In addition, the properties of
synchronising registers are exploited to enable threads to wait on interrupt events delivered by the
bus interface. In turn, the bus interface handles how such data packets and events will be composed
onto the bus.

One or more external devices can be connected to this high speed packet bus or, if required,
a legacy interface can be connected which allows commodity buses, such as the commonplace PCI
Express and USB, to be used with the Microgrid through a single standard interface.

The proposed implementation does not preclude the use of a DMA controller for direct memory
transfers. This is useful in such applications as, for instance, network routing, where inter-device
transfers are necessary with minimal processing of the I/O data in between.

Components Abstract

I/O Cores The I/O Core is a simplified version of a standard microthreaded core on a Microgrid.
It contains no floating point logic or floating point register file. Instead, it is equipped with
a bus interface to the high speed I/O bus and an I/O register file which possesses special
synchronisation and behavioural semantics.

59

Figure 10: Figure 1: A schematic view of the proposed I/O architecture and role of I/O Cores in
the Microgrid

HyperTransport-Like Bus A packet bus for high speed communication with devices. I/O packets
would consist of a control header (including device/channel information) and a data payload.
Further detail below.

Bus Interface A hardware interface device to the aforementioned bus. Has the function of com-
posing/decomposing fine grained bus events and messages, and translating them into register
file events and ’direct-to-cache’ transfers. Each I/O core will contain a dedicated bus interface.
Further detail in next section.

I/O Register File Every thread context on an I/O core contains a set of special registers which are
used to communicate with the bus interface. These registers, essentially semantic extensions
of synchronising registers, are used for both receiving I/O interrupt events (by waiting on a
read to the register) and for initiating writes to an I/O device, by providing an I/O channel
identifier, data pointer, and transfer size.

I/O Devices I/O devices can potentially be interfaced with the high speed I/O bus in a number
of ways. Some devices, for instance HyperTransport devices, may be directly coupled with
the bus. Others, legacy devices for instance, may require additional interface logic to mediate
between differing device protocols. With HyperTransport as an example, this interface struc-
ture is already present in existing technology, with for instance AMD using HyperTransport
to connect to traditional northbridge devices.

HT-Like Bus and Interface

HyperTransport:

A HyperTransport-like bus and protocol is proposed for communication in this model of Micro-
grid I/O. HyperTransport is a serial (or parallel, depending on configuration) bus specification for

60 E TOWARDS A MICROGRID HARDWARE I/O MECHANISM (TR)

high speed communication between devices. It is extremely well suited for the Microgrid because it
is relatively simple, yet the specification is highly flexible. The method of communication specified
in the HyperTransport whitepaper is packet based; one control packet and a variable length data
payload. This fits well with a channel+data based model proposed for the Microgrid.

From the standpoint of the basic model, HyperTransport provides a suitable technology ceiling
from which a feasible I/O bandwidth can be modelled and assumed. Table 1 shows the current
HyperTransport bandwidths and how they have scaled through time. It is safe to assume that the
next version will again offer technologically improved bandwidth.

The term ’HT-like’ is used since it may be desirable to make some departures from the official
HyperTransport specification (or indeed not specify the details at all) and simply use it for feasible
data-rate estimates and an approximate communication model (and, not least, to indicate easy
integration with existing devices for the accelerator notion of a Microgrid).

HT Ver-
sion

Year Max. Fre-
quency

Max.
Width

Max. Aggregate
Bandwidth

Max. Bandwidth
unidirectional

1.0 2001 800 MHz 32-bit 12.8 GB/s 6.4 GB/s
2.0 2004 1.4 GHz 32-bit 22.4 GB/s 11.2 GB/s
3.0 2006 2.6 GHz 32-bit 41.6 GB/s 20.8 GB/s
3.1 2008 3.2 GHz 32-bit 51.2 GB/s 25.6 GB/s

Table 1: Advances in HT bus performance through time (note, HT is DDR)

The additional advantage of choosing an existing bus technology is that it provides known pin
(and silicon) requirements on a given chip which uses HT for I/O. Table 2 shows the varying pin
requirements for the different link widths of hyper transport. The trade-off between transfer rate
and silicon budget remains an open question for the Microgrid.

Link Width (each way) 2 4 8 16 32
Data Pins 8 16 32 64 128
Clock Pins 4 4 4 8 16
Control Pins 4 4 4 4 4
V ldt 2 2 3 6 10
GND 4 6 10 19 37
PWROK 1 1 1 1 1
RESET# 1 1 1 1 1
Total Pins 24 34 55 103 197

Table 2: Pin out requirements for various HyperTransport widths

HyperTransport communications, officially, take the following packet form:

• A series of 32-bit words, irrespective of link width. Communications padded to
always align to word boundaries

• First word in the packet is always a control word, containing length and address
(I/O channel) information

Bus Interface:

This means that the existing HyperTransport specification fits very closely with the proposed
model of I/O in the Microgrid. The job of the HT-like Interface is thus relatively simple:

61

1) Compose and decompose HT bus messages into the associated channel/address
information

2) Write (and read) channel event messages into appropriate I/O control registers

3) Perform reads and writes from/to memory of the data payload in I/O events
at a specified location

This approach will require, at the very least, that the simulator model the internal communi-
cation carried out by the I/O interface. This will include the increased contention for the local
aspect of the memory system and unconventional behaviour of the register file at I/O cores (see
below). The intention is that threads running on an I/O core will not communicate directly with
any HT-like protocol, but only the channel and data interface discussed in the next section. The
way in which the interface communicates data to the local memory store, be it through a separate
interface or just the cores standard memory interface, is as yet undefined.

The requirements of the bus interface also stipulate that it must contain a rudimentary interrupt
controller, in order to map interrupt events to driver threads and store memory I/O pointers. How-
ever, given the overall model described here, the required logic is relatively simple when compared
to a full APIC used in existing chipsets and the absence of floating point logic relieves pressure on
silicon usage.

The I/O Register File

The I/O register file is a special extension to the concept of synchronising registers in the Microgrid
and SVP model. Each thread context on an I/O core will have access to the usual set of integer
registers, but no floating point registers, and some additional special I/O registers. These I/O
registers are used to control reads and writes to external I/O devices by means of the Bus Interface
using a channel/device identifier and some data to transfer in memory.

Acquiring a Device Context

Or How to Communicate with a Particular Device

There are many potential ways in which to acquire an I/O thread context with which to
communicate with a particular device, assuming that one I/O core gives access to more than
one device (otherwise one simply must delegate to the appropriate core).
The first of which is to assume that every thread context (of a ’driver’) on a given I/O core
is identical. Then, a register (in the case of the adjacent list, register 0) would be written to
with a device identifier which instructs the bus I/O interface with which device it must signal
from this thread.
An alternative is to use the family’s initial thread index value (specified at the point of family
creation) to indicate which device channel is required. In this case, one register in the ’driver’
context is spared.
Finally, and applicable to all of the special I/O registers, is the use of a fixed calling convention.
Each special register could correspond to a fixed position parameter in the driver thread’s
context. This would alleviate the need to perform any explicitly initialisation upon driver
thread execution.
The final decision will depend on whether a fixed mapping of register contexts to I/O devices
is used (if this is the case, then the I/O device/channel must be made explicit at the point of
driver thread creation).

The special I/O registers will consist of at least the following, for both reading and writing:

Channel/Device Identifier (see ’Acquiring a Device Context’)

Read/Write Interrupt Synchroniser

62 E TOWARDS A MICROGRID HARDWARE I/O MECHANISM (TR)

Data Buffer Pointer

Transfer Size

The set of I/O registers above would occur at a fixed position in each I/O core’s thread contexts.
Each of these special registers would be visible (i.e. mapped) the I/O Bus Interface.

An I/O thread (low-level driver) should initialise in the following way:

Write Channel/Device Identifier into register

Write data read/write address (buffer pointer)

Write transfer size (buffer size)

Either perform a read from or a write to the ’Read/Write Interrupt Synchroniser’

The ’Read/Write Interrupt Synchroniser’, used in point 3 in the list above, will use the existing
synchronising register concept of the Microgrid, modified with some special behaviour for I/O
communication:

Read from Synchroniser register: the driver thread suspends until the
I/O Interface receives an interrupt from the channel specified in the chan-
nel register and has completed writing the data payload into the buffer
specified by the data buffer pointer (and of maximum size specified in the
transfer size register).

Write to Synchroniser register: indicates to the I/O interface that a write
should be performed of the data specified in the data buffer pointer (and
of size specified in the transfer size register). A subsequent read to the
synchroniser register would suspend until this action has completed.

These additional I/O registers and their associated semantics would permit the software level
protocols described in [svp21] to be used as a driver and application level model.

Summary and Ongoing Work

• The Microgrid will feature specialised I/O cores

• A fast HyperTransport-like bus connecting devices to each I/O Core (up to a po-
tential 25.6 Gb/Sec in each direction)

• Each I/O core has a bus interface which mediates and composes/decomposes bus
events at the hardware level, and performs direct transfers to COMA memory.
This interface has the additional property of behaving as a rudimentary interrupt
controller

• A modified register file with I/O registers which are used to control the I/O inter-
face, and no floating point registers

• Architecture will largely support software protocol model described in [svp21] ,
subject to potential modifications

Next Steps: • Begin developing I/O API for software running on the Microgrid
• Prototype Low-level I/O model using PTL back-end to ensure feasibility of

model

63

F Efficient heap allocation on shared memory SVP (TR)

Key: svp34
Date: 2010-04-14
Status: Draft
Author: Raphael ’kena’ Poss
Author: Clemens Grelck
Version: svp34.txt 3640 2010-04-14 21:28:36Z kena
Source: svn+ssh://mac-chris.science.uva.nl/Library/SVN/CSA/doc/notes/svp34.txt

Abstract We describe a lock-free, TLS-based memory allocator.

Use case

We want to address the problem of frequent dynamic memory allocation by tasks in massively
concurrent (virtual) shared memory systems, where the result of allocations is only shared with a
few other tasks, where allocations may persist past the termination of a task, and where deallocation
may be performed by a different task than the allocating task.

Note

Tasks are concurrent units of executions defined by the program; we assume that tasks are
run (and scheduled cooperatively) within non-interruptible thread contexts, and that contexts
are recycled when tasks terminated. This model is a subset of several current models for
concurrency management, e.g. OpenMP tasks running on top of POSIX threads, SVP threads
running on top of Microgrid thread contexts, Cilk tasks on top of Cilk worker threads.

In this context we identify the following aspects to be considered for scalability:

1. locking -- lock-free approaches should be sought to avoid contention;

2. locality -- administrative data structures should be distributed to avoid cache traffic for
memory management alone;

3. space overhead -- administrative data overhead should be linear or constant in the num-
ber of threads, and fragmentation should be limited

And also next to scalability we need to diminish time overheads, in particular:

1. requests overheads -- the overhead for frequent, predictable and small-size requests
should be low (comparable to stack-based allocation), while it may be larger for in-
frequent or unpredictable or large requests; this is in particular useful in Apple-CORE
where objects (e.g. SAC array descriptors) may be allocated and deallocated often even
by very small tasks;

2. setup overheads -- speculative execution of setup code to prepare administrative data
for future requests should be minimized.

Conceptual overview

We assume that the shared address space is separated into two parts, the first part being shared
among all threads and hosting some “external global heap” managed by some memory allocator
not discussed here (possibly lock-based), and the second part being free for use by programs.

The allocator we propose uses this second part of the address space to serve “small” allocations
(where each requested size is below an arbitrary threshold) using a lock-free strategy.

Any individual allocation requested for a larger size is delegated transparently to the external
global heap allocator (which may be lock-based, depending on the implementation).

64 F EFFICIENT HEAP ALLOCATION ON SHARED MEMORY SVP (TR)

This request size threshold is configurable statically. Previous literature (refs?) suggest a thresh-
old of 256 bytes, while the research in Apple-CORE using SAC suggests a larger threshold (e.g.
1/2Kbytes).

We then split the address space in thread-specific ranges. In each range we define a thread-local
heap as follows.

Allocation requests within a thread are served by rounding the requested size to the nearest
larger “block size”, and searching for a free block. Free blocks are found in superblocks containing
many contiguous blocks (“chunks”) of the same size as an array. The superblocks are grouped in
bins of a size class. When no free blocks are found in existing superblocks, new superblocks are
allocated from storage and mapped within the thread-specific range.

Deallocation requests are served by tagging blocks as free. The actual free lists and superblock
use count are updated either:

• by the thread performing the deallocation if it is also the owner of the thread-local heap, or

• by a garbage collection process later during allocation by the owner thread.

The allocator places new superblocks in the thread-local address space of individual threads, and
each superblock is used exclusively by the thread-local heap corresponding to that address space.
The administrative data for the thread-local heap can therefore found in constant time and trivially
based on the thread identifier.

Also, entirely unused superblocks are released to the environment sometimes so that the storage
can be reused by other thread heaps in their (different) address ranges.

Overview of the data structures

We call the delegation threshold the threshold on the size of memory allocation requests past which
the proposed allocator delegates the request to the (external) global heap allocator.

We partition the part of the shared address space available to programs between all hardware
threads. We call each region of the partition the thread-specific address space.

We then construct thread heaps inside the thread-specific space as follows.

First the thread-specific space is further divided into equally-sized address ranges called slots.

Note

At this point, the partition of the shared address space into thread-specific spaces, and the fur-
ther division of thread-specific spaces into slots is entirely virtual, i.e. conceptually manipulates
sets of addresses without requiring physical storage to be mapped to these addresses.

The address space partitioning is illustrated in the following figure:

65

Area of the address space reserved to this allocator

0 2^64-1BASE BASE+TSZ-1

TSZ: total size of the address space usable by this allocator
(optimal: TSZ power of two)

BASE: base address of the address space
(optimal: BASE modulo TSZ = 0)

BASE BASE+TSZ-1

N thread-specific address spaces
(N = maximum number of non-preemptible thread contexts)

BASE+Pi
BASE+Pi
+PSZi-1

PSZi: total size of the thread-specific address space usable by thread i
(optimal: PSZi power of two, constant for all threads)

Pi: base address of the address space of thread i
(optimal: Pi modulo PSZi = 0)

BASE+Pi BASE+Pi
+PSZi-1

Global address space

Address space reserved for allocator

Thread-specific address space for thread i

PSZi/CSZ slots

BASE+Pi
+M*CSZ

one thread-specific address space

BASE+Pi
+M*CSZ
+CSZ-1

one slot

CSZ: size of a slot / superblock, constant for the entire allocator
(optimal: CSZ power of two)

Some notes about the selection of the constant CSZ is provided in Slot size and alignment below.
We then assume the implementability of the mapping of slots, the operation that requests storage

from the execution environments and maps this storage (using virtual memory mapping) into slots.
An unmapping operation is not necessary but can be used if present.

Note

On Unix the allocation of storage and mapping at a specific address can be achieved by means
of the system call mmap; on the Microgrid, the mapping is implicit on first access).

At the beginning of the thread-specific space, some slots are mapped and reserved for a control
block which holds metadata for the thread-specific allocator.

The control block contains:

• an array of bins for different block sizes below the delegation threshold. Each bin is either
empty (0) or contains the start/last links to a circular doubly-linked list of some slot-sized
superblocks described below. The number of bins and the block size for each bin is statically
configured.1

• the start link of a singly linked list of available superblocks (defined below);

For example in the proposed implementation we use 5 bins with block sizes 16, 32, 64, 128, 256.

66 F EFFICIENT HEAP ALLOCATION ON SHARED MEMORY SVP (TR)

• a bit vector of slots/superblocks in the thread-specific space, where the state of each bit
indicates whether the slot is currently mapped, i.e. whether the corresponding superblock is
currently allocated;

• the number of currently allocated superblocks in this thread heap;

• the number of busy superblocks (see below) from the allocated set.

Superblocks have the same size as a slot and are allocated when needed by mapping storage
onto slots. Each allocated (existing) superblock has a state; this state is deduced from the lists to
which the superblock belong: the superblock is available if it belongs to the available list in the
control block; it is busy if it belongs to the list of some bin. The mechanisms are defined so that
any allocated superblock belongs to exactly one list.

Each superblock contains:

• the next link of the list of available superblocks, or the next link of the list of superblocks in
the bin if the superblock is busy;

• if the superblock is busy:

– the prev link of the list of superblocks in the bin.

– the start link of a singly-linked list of free blocks within the superblock (defined below);

– a hint to the garbage allocation process (below) to indicate where to resume garbage
collection

– a first wilderness block of variable size, with a size field at the beginning, initially sized
to the remained of the superblock;

– an array of equally-sized blocks, each of the superblock’s block size,

• an variably-sized array of blocks whose end is aligned with the end of the superblock.

The structure of the control block and superblocks is illustrated as follows:

67

Thread-specific address space for thread i

control
block superblocks

(mapped slots, correspond to storage)

(unmapped slots,
no storage)

(unused)

Available superblock

next link in the list of available superblocks (LIFO)

(unused)

Control block

control block data

- bins of superblocks serving specific sizes
- start link of the list of available superblocks
- bit vector of mapped slots
- number of mapped slots (number of superblocks)
- number of busy superblocks

Busy superblock, no blocks used yet

prev link in the bin
next link in the bin

wilderness block

first link in the list of free blocks

Busy superblock with some used blocks

wilderness block free
block

used
block

free
block

free
block

hint for garbage collection
size of wilderness block

used
block

free list (LIFO order)

Each block in a superblock is composed of a block tag and a payload. The tag contains a value
which indicates the state of the block. A block can be in two states, either pending-free (tag 0), or
non-pending (tag > 0, either free or used but this distinction is not determined by the tag). When
a block is free, the free link in the superblock’s free list is stored in the payload.

Overview of the mechanisms

Overall optimization “tricks”

• when a block is freed by its own owner thread, the block is inserted into the free list, so that
the next request for the same size can reuse the cache lines (improved locality)

• when a block is freed in a superblock, the superblock is placed at the head of the bin, so that
the next request for that size can be services without finding a non-full superblock (improved
locality, diminished overhead)

• when garbage collection occurs, it starts with the superblock at the head of the bin and within
each superblock it scans circularly all blocks from a given “hint” position. A garbage collection
that is part of an allocation stops as soon as the request can be serviced, and a “maintenance”
collection stops after limited number of blocks/superblocks have been scanned. The point at

68 F EFFICIENT HEAP ALLOCATION ON SHARED MEMORY SVP (TR)

which collection stops is stored as a hint (for blocks in a superblock) or by updating the head
of the bin (for superblocks in a thread heap).

• during garbage collection, freed blocks are placed in LIFO order in their respective free lists, or
free blocks immediately succeeding the wilderness block are merged with it (improved locality,
diminished fragmentation);

• when all blocks in a superblock become free, the superblock is moved to the available list so
it can be reused by a different bin (diminished fragmentation)

• when the number of available superblocks exceeds a threshold, some superblocks are unmapped
to release the corresponding storage

• because of the wilderness block, it is not necessary to construct an entire free list when a
superblock is allocated (improved locality, decreased overhead).

Serving allocation requests (tls malloc)

When allocation request is received for a size higher than the delegation threshold, it is delegated
right away to the external global heap allocator.

Otherwise, the size is rounded up to the closest block size, and the corresponding bin is queried.
The following then applies in order:

1. if the bin points to a non-full superblock (wilderness block not empty or free list not
empty), then the superblock is used to serve the request directly (see below).

2. if the bin points to a full superblock (wilderness block empty + free list empty), then:

a. the chain of superblocks for this bin is garbage collected (described below).
This may cause some pending free blocks to be converted into free blocks, and
may cause some entirely free superblocks to become available (removed from
the bin, inserted in the available list).

b. if the bin contains some non-empty superblock, this is used to serve the request
(see below).

c. otherwise (#b failed: all superblocks are confirmed full), allocation proceeds
as per #3 below.

3. the bin needs a new superblock. The following happens:

a. the allocated slot/superblock count in the control block is queried to check
if there are any available slots in the thread-specific space (the number of
available slots is the total number of slots in the thread-specific space minus
the number of allocated superblocks indicated by the counter in the control
block).

b. if no slot is available, no more superblock can be constructed. The allocation
request is delegated to the external global heap allocator.

c. if some slot is available, the bitmap is searched for a free slot, and the mapping
is attempted. If the mapping fails, the allocation request is delegated as per
#b immediately above. If the mapping succeeds, the bitmap is updated,
the slot/superblock count is increased, and the superblock is initialized (see
below). Then allocation proceeds as per situation #1 above.

To serve an allocation request from a non-full superblock:

• if the free list is not empty:

1. the first block from the free list is taken,

69

2. the block is removed from the free list,

3. the block is tagged non-pending

4. the address of the payload is returned as the result of the allocation.

• otherwise (the wilderness block is not empty)

1. a new block is carved at the end of the wilderness block

2. the size of the wilderness block is decreased

3. the block is tagged non-pending

4. the address of the payload is returned as the result of the allocation.

If a superblock becomes full as a result of an allocation, the bin pointer is updated to point to
the next superblock in the chain (possibly the same superblock if there is only one, the chain is
circular).

Deallocation requests (tls free)

If the given address appears to lie outside of the thread-specific spaces, the deallocation request is
delegated to the external global heap allocator.

Otherwise, the following is tested:

• if the given address lies outside of the thread-specific space of the thread performing the
deallocation, then the tag address is deduced from the provided address and the block is
tagged pending free.

Note

If the thread performing the deallocation is known to lie in the same consistency domain
([svp30]) as the thread owning the heap, then the tag can be updated by a local memory
write. If the consistency domain may be disjoint, the write must be performed at the home
place ([svp32]) of the tag, which is guaranteed to use the same consistency domain as the
thread owning the heap.

No further work is performed in this case, because the thread performing the deallocation is
not the “owner” of the thread heap and may be running concurrently with some allocations.

• if the given address lies in the thread-specific space of the thread performing the deallocation,
this means that this thread is not concurrently serving an allocation request. Then the
following happens with no locking needed:

1. the tag address for the block is deduced from the provided address, and the block
is tagged non-pending;

2. the block is inserted in the free list of its superblock;

3. If the superblock is non-empty, the bin pointer is updated to point at this superblock,
because future requests can be honoured from this superblock

4. otherwise (superblock has become empty), then:

a. the superblock is removed from its bin and inserted into the superblock
available list in the control block,

b. the count of busy superblocks in the control block is decremented.
c. If an unmapping operation for slots is available in the implementation, and

if the busy count becomes lower than some threshold (e.g. half the count of
allocated superblocks), then some available superblocks are released (un-
mapped) to the environment.

70 F EFFICIENT HEAP ALLOCATION ON SHARED MEMORY SVP (TR)

Superblock initialization

When a fresh superblock is allocated in a slot for a given bin, the following need to be initialized:

• the wilderness block must be constructed to fill the entire superblock (size set to superblock
size minus header size),

• the prev and next links must be updated to insert the superblock into the bin,

• the busy superblock count in the control block must be incremented.

Garbage collection of superblocks in a bin

Garbage collection iterates over some superblocks in a bin (number TBD). For each scanned su-
perblock, some blocks in the superblock are scanned starting from the “hint” pointer.

If collection occurs in order to satisfy a request, scanning stops when the request can be satisfied.
If collection occurs as maintenance (or if storage runs low), all blocks / superblocks are scanned.

For any block found tagged pending free:

• the block is tagged non-pending,

• if collection is done as part of an allocation request, proceed with allocation from this block;
otherwise

• the block inserted in the free block list for that superblock, or merged with the wilderness
block if adjacent with it.

Whenever the scan stops (either after the request is honored, a predefined number of blocks
has been scanned, or the scan wrapped around in the superblock), the “hint” pointer is updated to
point to the next block. This allows future garbage collections to resume from that point.

After collection completes on a superblock, the free list and wilderness block are tested to see if
the superblock has become empty. If the superblock is now empty:

• the superblock is removed from the bin,

• the superblock is added to the available list in the control block,

• the busy superblock count in the control block is decreased.

After all superblocks have been handled, and if an unmapping operation for slots is available
in the implementation, then the following happens. The busy count in the control block is tested.
If it becomes lower than some threshold (e.g. half the count of allocated superblocks), then some
available superblocks are released (unmapped) to the environment.

Costs

Deallocation is constant time, worst case scenario is when the superblock is marked available and
the storage released to the environment.

Allocation is constant time if the bin contains a non-full superblock. In this case it costs three
memory loads and two stores.

If the bin is full, garbage collection occurs. If the bin is empty or garbage collection does not
free superblocks, the cost is further increased by external heap allocation.

However the allocator is scalable in that allocations by different threads can run fully concur-
rently.

71

Hypotheses

We assume the following:

• tasks/threads are run within non-interruptible thread contexts that are recycled between
tasks/threads (e.g. OpenMP tasks running on top of POSIX threads, or SVP threads running
on top of Microgrid thread contexts)

• the environment supports virtual mapping of storage to arbitrary address ranges (at some
granularity of ranges); and

• in any non-interruptible thread context, the thread code can query its own thread context
identifier from the execution environment at a low cost; and

• the total (maximum) number of thread contexts is known.

From these assumptions, we can partition (a possibly sparse part of) the shared address space
among all thread contexts.

If the partitioned address space is contiguous, aligned on a multiple of its size, and the set of
all hardware thread identifiers is evenly spaced, the partitioning is trivial and the base address of
each thread-specific region can be computed by simply shifting the bits of the thread identifier.
Otherwise, a mapping table can be constructed at system startup.

From this point, we know we can construct the following two functions, available to program
code and implemented either in hardware or in software, and computable at constant and minimal
cost:

• tls base() which, when run in a thread context, returns the base address of the thread-
specific region of the address space;

• tls size() which indicates the size of the thread-specific region.

Note

in the Microgrid, tls base and tls size are available in the ISA.

Slot size and alignment

The slot size, noted CSZ, and the base addresses of slots can be arbitrary specified under the
following constraints:

• CSZ must be larger than or equal to the combined size of 5 machine words;

• CSZ must be smaller or equal to the size of the smallest thread-specific region according to
the partitioning;

• CSZ must be a multiple of the granularity of the virtual storage mapping offered by the
implementation (e.g. a page-size on page-based VM systems);

• CSZ must be a power of two;

• the base addresses of slots must be a multiple of CSZ.

The last two constraints exist to ensure that the base address of a slot/superblock can be deduced
intrinsically from any address within the slot by simply masking the lower order bits of the inner
address.

72 F EFFICIENT HEAP ALLOCATION ON SHARED MEMORY SVP (TR)

Example on the MT-Alpha Microgrid

The MT-Alpha Microgrid has a 64-bit address space. The operating system, ROM, configuration
space and memory-mapped I/O is allocated on the lower half of the address space, i.e. all addresses
with the most-significant bit (MSB) set to 1 can be used for thread-specific partitioning.

Given 2ˆP cores and 2ˆT threads per core, we can split this higher address space in 2ˆ(P+T)
regions of at most 2ˆ(64-1-P-T) bytes each.

With Microgrid memory protection enabled ([svp7]), some address bits are reserved to identify
the protection domain. The number of reserved bits is then P + F, if there are 2ˆF family entries
per core, and the size of each thread-specific region becomes 2ˆ(64-1-P-T-P-F).

Then in order to provide a C call stack to each thread, we further split each thread-specific
region between an upper half (the stack) and a bottom half (the thread-specific heap).

The size remaining for heap allocation is then 2ˆ(64-1-P-T-P-F-1).
With 256 cores, 256 threads per core, 32 families per core, this means tls size = 8Gibytes.
With a “complete” Microgrid of 1024 cores, tls size = 512Mibytes.
(As a comparison, on an “embedded Microgrid” based on the 32-bit SPARC ISA, with 32 cores,

32 threads per core, 8 families per core and no protection, tls size = 1Mibytes.)
The Microgrid hardware maps storage with a cache line-sized granularity, i.e. 64 bytes.
We have thus:

• CSZ >= 5 * 8 = 40 (5 machine words)

• CSZ <= 2ˆ(64-1-P-T-P-F-1) = 8Gibytes for the 256-core microgrid

• CSZ multiple of 64 (cache line, granularity of mapping)

Example on page-based Unix

Unix allows for a fresh private address space to each process. Assuming an SVP implementation
supported by threads within a single Unix process, and assuming we can determine a contiguous
area of the address space, the same technique applies as for the Microgrid.

For example, using currently-available 64-bit hardware and an open-source Unix implementation,
the arbitrary VM mapping granularity is 4Kbytes (a page) and a test shows that a single process
has access to a region of at least 2ˆ40 bytes of unmapped address space before it starts allocating.

We have thus:

• CSZ >= 5 * 8 = 40 (5 machine words)

• CSZ <= (2ˆ40 / P) = 64Gibytes if P = 16 (16 hardware threads)

• CSZ multiple of 4096 (1 page, granularity of mapping)

Using Sun Solaris 10 on the Niagara T2, we see that a process also has access to at least an area
of 2ˆ40 bytes of contiguous address space:

• CSZ >= 5 * 8 = 40 (5 machine words)

• CSZ <= (2ˆ40 / P) = 16Gibytes (8 cores, 8 threads per core, therefore P = 64)

• CSZ multiple of 8192 (1 page, granularity of mapping on Solaris)

Slots and mappings

As supposed in the initial hypotheses, the underlying implementation supports mappings of storage
to arbitrary address ranges.

We can support either implicit mappings (slots are mapped automatically on first access) or
explicit mappings via a system service that allocates from a physical storage pool and maps the
specified part of the (virtual) address space to the allocated storage.

73

Note

on the Microgrid, the mapping is implicit and performed on first access. On Unix,
it can be performed by the system call mmap(Addr, CSZ, PROT READ|PROT WRIT,
MAP ANON|MAP FIXED, -1, 0).

We do not make any assumption on the availability of an unmapping operation (that releases
storage), although it will can be used if it exists.

We also assume that the first slot can be mapped for every hardware thread. This can be
enforced in various ways, e.g. by pre-mapping the first slot for every hardware thread when the
SVP system starts up.

74 G SIMPLE EXAMPLE SL PROGRAM UTILISING I/O API

G Simple Example SL Program Utilising I/O API� �
#include <svp hldrv.h>
#include <svp lowdrvs.h>
#include <svp/iomacros.h>
#define putc putchar

char t abuffer [100];
unsigned read size=5;
device node t ∗ tester ;

//a simple callback thread
sl def (acallback, void){

sl index (callbackid);
puts(”IO TEST: Callback! \n”); puts(”Callback ID: ”); putu(callbackid);
puts(”\nCallback Values: ”);
static unsigned lastpos;
int i ; char t char;
for(i=lastpos; i< lastpos+read size; i++){

putc((char)abuffer[i]); putc(’ , ’);
}

lastpos+=read size;
putc(’\n’);
}
sl enddef

//main io test method
sl def (t main, void)
{

sl place t io place = IO HLDRV PLACE;
sl place t io ex place = IO HL EX PLACE;
GET EX PID(io ex place);
char t readachar;

/∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Device Initialisation

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ∗/
puts(”IO TEST: Initialising Device Object...\n”);
INIT DEV(1,io place,io ex place,BLOCK D,(ldrv pntr)burstchar drv,0,5,tester);

/∗ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Main I/O Test

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ∗/
puts(”IO TEST: Testing synchronous reads...\n”);
char t tempbuff[read size];
READ DEV(tester,tempbuff,read size);
puts(”IO TEST: Sync Read:”);
int s ;
for(s=0;s<read size;s++) {putc((char)tempbuff[s]);putc(’,’);}
putc(’\n’);

puts(”IO TEST: Testing asynchronous reads...\n”);
READ DEV ASYNC(tester,buffer,read size,(async callback)&acallback);

puts(”End of I/O Test reached.\n”);
//should wait here indefinitely for async stuff
while(1){;}
}
sl enddef� �

75

H SL Standard Library (TR)

SL standard library
Key: sl5
Date: 2010-06-14
Status: Draft
Author: Raphael “kena” Poss
Source: svn+ssh://mike@mac-chris.science.uva.nl/Library/SVN/CSA/doc/notes/sl5.txt
Version: sl5.txt 3849 2010-06-14 16:36:57Z kena

Introduction

Standard library services in SL are available in two flavours:

• SVP thread functions suitable for use with sl create; these require explicit create/sync
constructs to be used;

• wrapper preprocessor macros that expand to more complex SL code containing data initial-
ization and create/sync blocks.

Wrapper macros are intended to simplify writing SL programs, while “fitting” semantically in
the traditional syntax patterns of C. For this purpose, macros are written to be either:

• statement-like, i.e. usable whenever a statement can be used in the language grammar;

• expression-like, i.e. usable whenever an expression can be used in the language grammar.

The syntactic role of each library service is described alongside with the functionality in the
following sections.

Compiler utilities

The following definitions are available in svp/compiler.h:

• statement-like macro nop(): as its name implies causes the program to step forward with no
side effect.

• expression-like macros likely(X) and unlikely(X) that can be used to guide branch opti-
mization. See the provided macro definition and the description of builtin expect in the
section “Other built-in functions provided by GCC” in the GCC documentation.

Communication with the environment

Text and data output

The services defined in note [mgsim5] are available in svp/testoutput.h.

Data input

The services defined in notes [sl3] are available in svp/slr.h and svp/fibre.h.

Console output

At the time of this writing the Microgrid simulator does not yet provide full-scale I/O, and are
not equipped with an operating system rich enough to provide the full C I/O library. As the
smallest common feature denominator across SVP implementations, it restricts the SL language to
not provide the C I/O primitives, even if the language is derived from C.

76 H SL STANDARD LIBRARY (TR)

However, the simulator does provide a single unbuffered character output channel. This can be
simulated on other SVP implementations using character output on a process’ standard output, so
it has been chosen as a fundation for a small-scale character output library available to SL programs
and a restricted subset of C’s standard I/O library.

The custom output library provides the following interface:

• single character output: svp io putc;

• C string output: svp io puts;

• arbitrary bytes: svp io write;

• single floating point number: svp io putf;

• single signed integer: svp io putn;

• single unsigned integer: svp io putun;

• roman numerals for small unsigned integers: roman;

• formatted output: svp io printf;

For each of these services the actual thread function identifier is declared in svp/io.h, starting
with “svp io”; this is used by explicitly creating a family of a single thread using the identifier as
thread function.

See below for examples.
See also Input/output (7.19) for standard C interfaces.

Character, string and bytes output

The interfaces are as follows:

• single character output:

sl decl(svp io putc, void,
sl glparm(char, c));

• C string output:

sl decl(svp io puts, void,
sl glparm(const char *, str));

• arbitrary bytes output:

sl decl(svp io write, void,
sl glparm(void *, ptr),
sl glparm(size t, size));

Floating point output

The following service is provided:

sl decl(svp io putf, void,
sl glfparm(double, number),
sl glparm(unsigned, precision),
sl glparm(unsigned, base));

/* pseudo-declaration for the statement-like macro */
#include <svp/iomacros.h>
void putf(double number, unsigned precision);

77

When this service is used it prints the floating point number to the console output using the
specified precision (number of digits) and base. When the wrapper macro putf is used, the base is
set to ten.

The floating-point number is normalized before printing so that the output mantissa stays be-
tween zero and the specified (excluded). The sign is always printed.

Examples:

putf(10.4, 5); // outputs +1.0400E+1
putf(-1, 2); // outputs -1.0E+1
putf(300, 1); // outputs +3.E+2

The behavior of svp io putf becomes undefined when the base is set to 0 or 1.
The special values NaN, positive infinity and negative infinity are printed as nan, +inf and -inf,

respectively.

Integer output

The following services are provided:

sl decl(svp io putn, void,
sl glparm(int64 t, number),
sl glparm(unsigned, base));

sl decl(svp io putun, void,
sl glparm(uint64 t, number),
sl glparm(unsigned, base));

/* pseudo-declarations for the statement-like macros */
#include <svp/iomacros.h>
void putn(int64 t number);
void putu(uint64 t number);

When this service is used it prints the intger number to the console output using the specified
base. When the wrapper macros putn and putu are used, the base is set to ten.

Examples:

putu(42); // outputs 42
putu(’A’); // outputs 65
putn(-123); // outputs -123

The behavior is undefined if the base is set to 0 or 1.

Roman numerals

As the Alpha-based SVP implementation does not provide hardware support for integer divide, the
development of a software substitute (described above) required some primitive output for testing,
to ensure the validity of the divide results. The resulting primitive is a thread function which outputs
its parameter as roman numerals. The algorithm to output roman numerals does not require integer
division.

This service is a special SL “extension” not defined in the C language, intended mostly for
testing purposes. The thread function is declared in header svp/roman.h as follows:

sl decl(roman, void, sl glparm(short));

The roman numeral output does not use the substractive principle, i.e. the decimal value 9 is
printed as VIIII instead of IX. A leading “-” is printed if the value is negative.

78 H SL STANDARD LIBRARY (TR)

Data input

Interactive data input from the runtime environment is not supported as of this writing.
Initial data input (e.g. run-time program parameters) is supported via the external “slr” data

input mechanism described in note [sl3] .

Delegation and places

The following definitions can be reached by including svp/delegate.h:

• the declared type sl place t: opaque type suitable to declare any object (including synchro-
nizing objects) that can hold a SVP place identifier. The only operations defined for this type
are comparison (equality) and assignment.

• the constant SVP EXIT NORMAL: equivalent to EXIT NORMAL in TC. Termination status when a
family terminates normally.

• SVP EXIT BREAK: equivalent to EXIT BREAK in TC. Termination status when a family termi-
nates asynchronously due to the break operation.

• SVP EXIT KILL: equivalent to EXIT KILL in TC. Termination status when a family terminates
asynchronously due to the kill operation.

• PLACE LOCAL: specifier for the local place.

• PLACE DEFAULT: specifier for the default place. (note, this is the default when no place is
specified in sl create)

• PLACE GROUP: specifier for the enclosing place (after PLACE LOCAL restricts a current place).

Additionally, the services defined in note [sl7] are available in svp/sep.h.

Compatibility with the C99 library

Support for features from the C99 library is unspecified unless stated explicitly in the following
sections.

Diagnostics (7.2)

The standard header assert.h and its services are available in SL.

Character handling (7.4)

The standard header ctype.h and its services are available in SL.

Errors (7.5)

The standard header errno.h and its services are available in SL.

Note

The value errno declared therein is shared by all threads and may not be kept consistent
between uses when modified by concurrent threads.

Characteristics of floating-point types (7.7)

The standard header float.h and its services are available in SL.

79

Sizes of integer types (7.10)

The standard header limits.h and its services are available in SL.

Mathematics (7.12)

The standard header math.h is available to SL programs; it supports the C standard services except
for the following:

• any function operating with the long double data type;

• the FP CONTRACT pragma.

Note

Programs using the C math library should be linked with -lm.

Warning

Due to an incomplete underlying implementation, the tgamma function may return incorrect
results.

Variable arguments (7.15)

The standard header stdarg.h and its services are available in SL.

Boolean types and values (7.16)

The standard header stdbool.h and its services are available in SL.

Common definitions (7.17)

The standard header stddef.h and its services are available in SL.

Integer types (7.18)

The standard header stdint.h and its services are available in SL.

Input/output (7.19)

The standard header stdio.h is available to SL programs, but support is restricted to the following:

• the declared types size t, FILE, fpos t,

• the macros NULL, EOF, BUFSIZ, FILENAME MAX,

• the expressions stderr and stdout,

• the byte output functions fputc, fputs, fwrite, putc, putchar, puts, fprintf, printf,
vfprintf, vprintf,

• the string formatting functions snprintf, sprintf, vsnprintf, vsprintf,

• the error formatting function perror.

Note

stdout is unbufferred.

Note

See also Supported C extensions below.

80 H SL STANDARD LIBRARY (TR)

General utilities (7.20)

The standard header stdlib.h is available to SL programs, but support is restricted to the following:

• the declared type size t,

• the macros NULL, EXIT FAILURE and EXIT SUCCESS;

• integer-string conversion functions (atoi, atol, atoll from 7.20.1.2, strtol, strtoll, strtoul,
strtoull from 7.20.1.4);

• memory management functions (malloc, realloc, free, calloc from 7.20.3)

• the abort function (7.20.4.1)

• the getenv function (7.20.4.5)

• the exit and Exit functions (7.20.4.3, 7.20.4.4)

Note

See also Supported C extensions below.

String handling (7.21)

The standard header string.h is available to SL programs, but support is restricted to the following:

• copying functions (memcpy, memmove, strcpy, strncpy from 7.21.2)

• the concatenation functions strcat, strncat (7.21.3)

• the comparison function strncmp (7.21.4)

• the search function strchr (7.21.5)

• the misc functions memset, strerror and strlen (7.21.6)

Note

See also Supported C extensions below.

Time (7.23)

The standard header time.h is available to SL programs, but support is restricted to the following:

• CLOCKS PER SEC;

• the declaration of the clock() function.

Supported C extensions

Allocation from the stack frame

The non-standard (but nevertheless common) pseudo-function alloca is available in alloca.h:

void* alloca(size t);

This function allocates space in the stack frame of the caller, and returns a pointer to the
allocated block. This temporary space is automatically freed when the function from which alloca
is called returns, or when the thread where it is called terminates.

81

Note

It is not valid to pass a pointer returned by alloca to C’s free function.

Note

The behavior of alloca in combination with C99’s variable length arrays (VLAs) is left
unspecified in this document.

Note

As this function is a compiler intrinsic in most implementations, the name alloca may be a
macro and may not have an address.

Extra string handling

The following popular BSD and POSIX extensions are available from string.h and strings.h:

• safe string manipulation: stpcpy, stpncpy, strnlen, strlcpy, strlcat;

• MT-safe strerror r;

• strdup;

• bcopy (old BSD interface to memmove), bzero (old BSD interface to memset).

	Overview
	Introduction and Motivation
	An OS strategy
	Space vs Time
	Processes vs. Threads
	To Preempt or not to Preempt

	Deliverable 5.3 `at-a-glance'

	Resource management
	Spacial on-chip resource management
	Thread and family context management
	Thread local storage

	Memory storage
	I/O Channels and other devices
	Summary

	Monitoring
	Introduction
	Synchronous in-program monitoring
	Low-level support for performance counters
	Software-hardware interface

	Asynchronous architectural monitoring
	Summary

	Input/Output in SVP and Microgrids
	Overview
	Motivation
	Context of I/O Work
	Related Work
	Key Areas of the Work

	I/O Operating System Stack
	TC I/O API
	I/O Model (Synchronous and Asynchronous)
	Low-Level Drivers
	I/O Places
	Parallel I/O

	Microgrid I/O Implementation
	I/O Cores
	High-Speed Bus
	Bus Interface
	Device Communication and Interrupt Handling
	Synchronising and Interrupts
	Memory Interface

	Summary
	Performance Results
	Milestones
	Future Work

	Cooperative Deadlock-Prevention
	Problem Description
	Sequentializing
	Registers
	Group creates
	Delegated creates
	Exclusive creates
	Hardware extensions
	Summary

	Report Summary
	Appendices
	SL Library: dynamic place allocation (TR)
	Asynchronous simulation monitoring (TR)
	SL Library: performance counters (TR)
	Generalized I/O events for the Microgrid (TR)
	Towards a Microgrid Hardware I/O Mechanism (TR)
	Efficient heap allocation on shared memory SVP (TR)
	Simple Example SL Program Utilising I/O API
	SL Standard Library (TR)

