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Executive Summary

Task WP3a was carried out and proposals for change to SVP and the SL language
are presented in this deliverable. This completes the first milestone of WP3 suc-
cessfully.

In the process of accomplishing task WP3a, we have clarified the role of SVP
in the project and technical aspects of the interactions between SVP, S-NET and the
mapping technology provided by TWENTE. This is also reported in this document.

The output of the research performed as part of this deliverable was docu-
mented in the documentation system of the CSA group at the University of Ams-
terdam. This report is constructed as a compilation of the relevant technical notes
from our documentation system.
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Introduction to D3.6
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Status: Draft
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Date: 2010-11-17
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Version: adv15.txt 4158 2010-11-17 23:42:55Z kena
The report for deliverable D3.6 covers task WP3a, “Extensions to SVP and the

SL language”. This defines three sub-tasks:

• extension of SL to support the expression of extra-functional concurrency;

• definition of a method/language to describe and/or access hardware charac-
teristics;

• definition of a method to monitor the execution of programs.

1.1 Organisation

In ?? we first introduce SVP at an abstract level, by giving its fundamental prin-
ciples. We then detail in ?? what SVP is and what it means in the context of
ADVANCE. In particular, we outline its composition as a technology.

We also recognize in ?? a potential shortcoming of the implementation of SL
for the analysis of extra-functional requirements, namely the lack of typing infor-
mation in the compiler. In ?? we propose to enhance SL to address this short-
coming. Then we propose a SL extension to express arbitrary extra-functional
requirements in ??.

Then we describe resource management in SVP. In ?? we identify actual hard-
ware targets planned for use in ADVANCE. Then we propose an abstract scheme
to identify and describe hardware for use by SVP programs. We then propose in
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?? how to integrate the partner technology Kairos (from TWENTE) for on-line
resource mapping within SVP.

Next we describe the interaction between SVP and S-NET in ??. In particular,
we recognize the need to adapt the S-NET implementation to express its concur-
rency using SVP. We then propose an implementation scheme for S-NET and we
highlight its benefit for later stages in the project, in particular in the area of re-
source management.

Also, in XXX we propose a scheme to enable run-time monitoring of activities.
This is based on the attribution of process identities to work units, and a mechanism
to gather run-time observations about entire processes.

Finally in ?? we summarize the concepts introduced in this document and in
?? we summarize the implementationt tasks.
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Chapter 2

Abstract machine model

Key: adv2
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Status: Draft
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Abstract: This note describes an abstract machine model for the AD-
VANCE “hardware virtualization layer”.

2.1 Overview

Our concurrency management system is a programming system where:

• asynchrony is available as a program primitive;

• where asynchronous computations are located into virtual execution resources;

• where the finite nature of execution resources is acknowledged and inte-
grated into the execution semantics;

• where resource-specific opportunities for compile-time optimizations are vis-
ible in program semantics.

The peculiarity of this abstract machine is that it does not expose memory (from
hardware storage) as a shared device, nor does it identify channels and communi-
cation (from interconnects), to be used arbitrarily by concurrent processes. Instead,
interactions between asynchronous activities are controlled by data dependencies
and dependency patterns of different kinds. The mapping of data dependencies and
synchronization around them is delegated entirely to the environment.
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2.2 Fundamental principles

2.2.1 Asynchrony, scheduling and data dependencies

The first fundamental principle is that programs express asynchrony and loose map-
pings of computations to resources but can make no assumption about the schedul-
ing of this asynchrony within each resource, both over time (interleaving) and over
space (mapping of individual units of work to independent physical hardware).
These aspects are entirely delegated to the execution environment.

The model for this principle can be defined as follows:

• schedule-agnosticism: if two program fragments A and B are expressed to be
asynchronous relative to each other, then the execution of A may precede the
execution of B in time, or it may succeed the execution of B, or the executions
of A and B may be (partly or completely) simultaneous, or the executions of
A and B may be interleaved.

This indeterminate schedule applies whether A and B are located on the same
virtual resource or not; that is, a single virtual resource may or may not
provide actual (time-simultaneous) concurrency.

• interference within places: programs cannot assume any scheduling, in par-
ticular fair scheduling, to guarantee progress in non-terminating or mis-
behaving programs mapped to the same resource. In other words, if A and
B are expressed to be asynchronous and co-located onto the same virtual re-
source, and the execution of A does not terminate, then either the execution
of B does not start, or it starts and may not terminate even if B would oth-
erwise terminate if the execution of A didn’t start yet. Also, A and B might
be configured to execute so that if A performs an invalid action with side-
effects, the execution of B might become undefined (i.e. A and B are not
isolated).

• non-interference across places: fair scheduling is guaranteed across inde-
pendent virtual resources. In other words, if A and B are expressed to be
asynchronous and located onto two distinct virtual resources, then whether
the execution of A does or does not terminate, the execution of B will start at
some point in time and be guaranteed progress.

Additionally, if the two virtual resources are also associated to distinct pro-
tection domains, then invalid actions in A will not influence the execution of
B (i.e. separate protection domains provide isolation between places).

Despite these properties (or lack thereof) on scheduling, asynchrony can be
controlled by means of data dependencies. Programs can express that two program
fragments A and B are relatively asynchronous except for their uses of a specific
data item. The kind of the data item and the dependency pattern are both expressed
and determine the semantics of program actions that access the data item during
execution. This can be defined as follows:
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• data-driven synchronization: when two program fragments A and B* are
expressed to be asynchronous but also declare to share a collection of data
items (d1, d2...) of one or more kinds (k1, k2, ...) according to a dependency
pattern p, then the scheduling of all actions that operate on the data items is
further constrained by scheduling properties determined by p and the set of
kinds (k1, k2, ...).

Another document will detail how to define data items, what basic kinds are
available, how to describe a dependency pattern, and the scheduling constraints
corresponding to compositions of kinds.

2.2.2 Exclusion

The second fundamental principle is a unique exception to the first principle: exe-
cution resources are also the vessel for exclusion. This can be defined as follows:

• exclusive composition: if two fragments A and B are expressed to be asyn-
chronous, and exclusively co-located onto the same virtual resource R, then
either: the start of the execution of A succeeds (in time) the termination of
the execution of B, or the start of the execution of B succeeds the termination
of the execution of A.

As will be demonstrated below, this composition mechanism allows both for
safe sharing of state (memory, I/O channels) and cooperative reclaiming of re-
sources.

2.2.3 Capped resource usage

The third fundamental principle is that resources are allocated for an (arbitrarily
large) finite amount of time; this contract is enforced by the environment and causes
abnormal termination of computations that exceed their time limit. Also, resources
have a finite capacity for simultaneous work.

This can be defined as follows:

• completion status: if three fragments A, B and C are expressed so that B is
designated as the normal continuation of A and C is designated as the failure
continuation of A (see the rest of this document for the specific constructs),
then a choice will be performed by the execution environment when A ter-
minates (either normally or abnormally) and proceed accordingly either with
the execution or B or the execution of C -- and not both.

There can be three kinds of failure continuations, one for each failure condi-
tion described immediately below.

• abnormal situations: some action in a program fragment A might cause an
abnormal termination during its execution. The abnormal continuation is
then executed if defined, otherwise the abnormal continuation of the outer
program is execution, and so on recursively.
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• overflow: if a program fragment A is localized at some virtual resource R;
and if at run time the capacity of R cannot accomodate the execution of A
(either because the exclusive resource is currently busy, or because no more
concurrent resources are available), then the execution of A is interrupted
abnormally with an overflow status. The overflow continuation is then ex-
ecuted if defined; if the overflow continuation is not defined the status is
handled as if it was indicating abnormal termination.

• time contract: if a program fragment A is located at some virtual resource
R; and if at run time the execution of A exceeds the time limit of R, then the
execution of A is interrupted abnormally with an excess status. The excess
continuation is then executed if defined; if the excess continuation is not
defined the status is handled as if it was indicating abnormal termination.

• allocation service: the environment provides a service that can be queried by
means of program actions to request allocation and deallocation of resources
with time limits.

Another document will detail how to manipulate resources in programs.

2.2.4 Specialized dispatch

The fourth fundamental principle is that program implementations are specific to
some kind(s) of virtual resources. This means that while hardware resources are
virtualized, the program representation (in term of which effective actions will
drive its execution) is dependent on the resource where it is located. In other words,
we do not describe a “virtual machine” with a uniform set of basic instructions that
can be executed on any virtual resource.

Instead, we isolate the following concepts:

• program descriptions (“source code”), that are annotated to indicate which
kinds of effective resources it can actually target (one or more);

• executable program representations (“binary code”), which can actually ex-
ecute on (virtual) resources;

• specialization paths (“compiler tool chains”), which are lazily evaluated
functions which produce executable representations as output and take the
following as input:

– a (set of) program description(s),

– a description of the target virtual resource,

– optionally, any known data dependency pattern related to program com-
position,

– optionally, extra run-time information that is relevant to optimization
engines.
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These concepts are related as follows:

• program descriptions are identified;

• program composition is expressed by name, i.e. program reuse is expressed
by a composition operator and the identifier(s) of some other program de-
scription(s);

• at run-time, when the point of composition is reached, the environment uses
its known set of specialization paths to select an appropriate executable rep-
resentation and satisfy the composition, based on which effective resource is
being targeted;

• when program composition expresses localization, the two following condi-
tions must be met:

– the description of the target program in the composition must indicate
that it can run on (at least) the target resource kind, and

– the environment must know of (at least) one specialization path which
produces a valid executable representation for the target program on
the target resource;

• shared data items and data dependency patterns can be related explicitly to
program composition points in programs, so that the visibility of data depen-
dencies is exposed to the specialization paths and can be used for optimiza-
tion.

Other notes will detail how program descriptions are annotated, and how exe-
cutable representations can be further selected in case of ambiguity (multiple rep-
resentations for a single target resource), and how to relate data dependencies and
program composition for the purpose of optimization.
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3.1 Background on SVP

The Self-Adaptive Virtual Processor (SVP) as designed in the CSA group at the
University of Amsterdam is, foremost, a combination of:

• a software paradigm1; and

• a set of “best practices” for the implementation of concurrency support sys-
tems in software and hardware to run programs that embody the SVP paradigm.

We review these two perspectives in the following sections.

1The following definition of “paradigm” is used here:

a philosophical and theoretical framework of a scientific school or discipline within
which theories, laws, and generalizations and the experiments performed in sup-
port of them are formulated; broadly : a philosophical or theoretical framework of
any kind -- Merriam-Webster Online, http://www.merriam-webster.com/
dictionary/paradigm
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3.1.1 The SVP paradigm

SVP touches system software engineering by addressing the following:

• the expression of concurrency in program source, by requiring programs to
express concurrency, synchronization and communication according to a set
of predefined patterns. As such, it can be seen as a concurrency model;

• interactions between programs and their environment, in particular how pro-
grams interact with I/O services and data storage. As such, it can be seen as
a framework, taking over many roles usually served by an operating system.

From this perspective, SVP does not mandate the use of a specific program-
ming language. Instead, it imposes guidelines on the expression of concurrency in
programs, like how concurrency is created or terminated and how communication
is defined. The broad vision of SVP is described in ??.

The programming language SL (described below) incorporates the SVP prin-
ciples and has been designed specifically to serve as a common representation to
target multiple SVP platforms, but each SVP platform may be targeted by multiple
programming languages.

3.1.2 SVP as a concurrency support system

When used as a framework to run concurrent applications, SVP provides the fol-
lowing:

• eager dataflow scheduling: programs issue asynchronous operations that are
immediately schedulable, but unsatisfied (explicit) data dependencies cause
threads to suspend;

• hierarchical composition of dynamically created, concurrent bundles of ex-
ecution threads called families, executing the same program code but in dif-
ferent execution contexts;

• efficient fine-grained synchronization through dataflow channels;

• hierarchical and composable binding of families to named execution re-
sources, called places, that are hierarchically defined and managed;

• sharing of state and bounded non-determinism (in particular time-synchronized
side-effects on I/O devices) through placement to exclusive places, which
subsume exclusion to the resource management system;

• protection and state isolation through place boundaries between resources
instead of attributing identities to activities directly.
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It is by making assumptions about the expression of concurrency programs
that a SVP system can provide an efficient execution of this concurrency on a
given resource. Again, there is no canonical “SVP platform”; run-time systems
for different execution resources can implement the management of concurrency
in different ways, including support for programs that do not specifically embody
the SVP programming paradigm.

However, for the purpose of ADVANCE we have selected a particular imple-
mentation route, which will be described below.

3.1.3 SVP as a model of execution

In an environment where a given platform only executes programs written using
the SVP paradigm in a SVP concurrency framework, one can also use SVP as an
execution model2 to reason about the run-time behavior of programs, including
resource usage and communication patterns.

Intuitively, this model is only valid for SVP programs on SVP-aware platforms,
i.e. it does not apply when non-SVP forms of concurrency are executed on SVP-
aware platforms or when SVP programs are executed on non-SVP platforms.

3.2 Aspects outside of the scope of SVP

The following aspects are not specifically addressed by SVP:

• portability, especially across existing (legacy) operating systems: SVP does
not provide a set of programming APIs or system interfaces that ensures that
the same program code can run unmodified (modulo recompilation) across
different operating systems.

However, it is foreseen that the implementation of an SVP framework for
ADVANCE will guide portability and suggest a portability strategy for the
partner technologies.

• hardware virtualization in the sense commonly in use in 2010: SVP does
not provide a virtual hardware platform upon which entire existing operating
systems and application code can run unmodified. This would be an abstrac-
tion mismatch: SVP drives the implementation of programming languages
and concurrency management systems, not the interface layer between soft-
ware and hardware.

As the second point caused some concern among the partners during the re-
porting period, we need to clarify the following points here:

2The following definition of “model” is used here:

a system of postulates, data, and inferences presented as a mathematical descrip-
tion of an entity or state of affairs -- Merriam-Webster Online, http://www.
merriam-webster.com/dictionary/model (definition 12)
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• how can the software stack introspect the hardware on which it is running in
a uniform way across the envisioned platforms?

For this, we extend SVP with a “resource description language” that captures
the characteristics of hardware uniformly. Although this aspect was not con-
ceptually part of SVP originally, partnership with UTwente has allowed to
construct a solution to this.

• how can the technology be structured so that single program representations
can run on multiple resources with radically different architectures, e.g. a
general-purpose CPU in combination with a GPU accelerator or dedicated
hardware?

For this, no clear technical solution at the level of SVP has emerged yet (al-
though the CSA group at the University of Amsterdam will consider this out-
side of the scope of ADVANCE). However, between partners in ADVANCE
it was agreed that the main vehicle to express architecture-neutral algorithm
(box) code would be SAC, which has separate compilation routes to SVP and
accelerators. The interaction between compiled SAC code targeting SVP
and SAC-generated accelerator code will be hidden behind the SVP place
and family abstractions.

3.3 SVP as a technology

To exemplify the benefit of SVP in run-time systems, multiple SVP-aware en-
vironments have been implemented that exploit the assumptions provided by the
paradigm: a custom on-chip distributed many-core architecture (the Microgrid), a
concurrency manager running over distributed memory (d-µTC), and another con-
currency manager targeting hybrid shared memory and distributed memory sys-
tems (e.g. cluster of many-cores) called Hydra ([?]).

To support the use of the paradigm in programs, multiple SVP-aware languages
have evolved: µTC, designed to program the Microgrid; the µtc-ptl library for C++,
designed to program the d-µTC environment; and SL, intended to serve as a com-
mon intermediate representation for all these platforms and future SVP implemen-
tations.
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In ADVANCE we intend to reuse the SL language, with the Hydra implementa-
tion as a “primary” target. Depending on partner interests and available resources,
other SVP implementation will be considered as well.

3.3.1 The Hydra framework

The Hydra framework is a combination of a software runtime system for SVP
programs and the code generation layer for a SL compiler that is able to target this
runtime system.

As a runtime system, it implements the necessary functionality for running
SVP programs expressed in SL across networks of multi-core computers, taking
advantage of the parallelism supported by the hardware and the concurrency ex-
pressed in the programs. In particular, it implements low-overhead concurrency
creation and synchronization, and a distributed global address space between nodes
in a network. The code generation layer in the compiler takes advantage of its var-
ious features, as they were developed in tandem.

It currently runs over GNU/Linux on 64-bit architectures. More details are
available in [?].

In the context of ADVANCE, we plan to extend this framework to support
named resources, mutual exclusion and delegation of work to hardware accelera-
tors.

3.3.2 The SL language and compiler

The SL language was designed specifically to enable retargeting a single program
representation to multiple SVP implementations. It is an extension of the C lan-
guage (version C99) and captures the SVP semantics as a number of primitives
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for family creation, synchronization on termination, and dataflow synchronization.
With the Hydra framework, it is further extended with constructs that facilitate the
use of partial memory consistency offered by Hydra between nodes in a distributed
memory system.

The specification of SL and information about its implementation in a compiler
as of the start of ADVANCE is available in [?] and [?].

The SL compiler takes C code with SL extensions as input and transforms all
the SL constructs to C source code with annotations and optional inline assembly.
This C output is then passed to the native underlying C compiler for the target SVP
architecture.

3.3.3 Current and future status of the implementation of SL

The attentive reader will notice when exploring references that the SL language,
as documented, exposes SVP features with a syntax and semantics that are not
specifically human-friendly. This situation is the result of three aspects:

• the original purpose of SL was to serve as an intermediate representation
to be generated by higher-level compilers, including the SAC compiler pro-
duced by HERTS;

• at the time of its design, another key requirement was the ability to rapidely
prototype automatic program transformations in a compiler;

• at the time of its initial implementation, no complete C front-end was avail-
able that would both be open-source and easily modifiable for the purpose
of research in program transformation.

To summarize, this SL language is regular and homogeneous, but extremely
verbose and requires manifest types for variable uses in concurrency constructs.
Any C code outside or between SL constructs is passed unmodified through the SL
compiler which builds no representation of its semantics other than the sequential
control flow around the concurrency constructs.

While the lack of “aesthetics” is irrelevant to ADVANCE because SL will also
be used as an intermediate representation in this project, the lack of a type system
for the native C code is a recognizable potential hindrance for some ADVANCE
goals; in particular, the expression of non-functional requirements like throughput
constraints are highly dependent on understanding data types and their machine
representation.

In order to enable a more comprehensive research with SL in ADVANCE, we
therefore propose to extend the SL language with a new syntax and a new compiler
front-end which enable full analysis of program semantics.

This would be made possible by, and take advantage of a new compiler technol-
ogy, the CIL framework ([?]), that was uncovered during the first reporting period.
CIL provides an infrastructure for performing research on C language extensions
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and program transformations, a good fit for the SL language. With this technol-
ogy in mind, we were able to design a new syntax and flexible semantics for SL,
documented in ??, that we hope to introduce and implement early during the next
reporting period.

3.4 Summary of concurrency concepts in SVP

The following concepts are provided by SVP and are explained in ??:

• Base SVP concurrency concepts:

– thread, family, singleton family

– creation (action), family handle

– place, exclusive place, delegation (action)

– synchronizing data dependencies

– synchronization on termination (action)

– asynchronous termination (action)

– parent, index

– thread function, thread context

• Terms from [?]:

– consistency domain, memory object

• Terms from ??:

– function, spawn (action)
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Abstract: This note attempts to reconstruct our SVP language incre-
mentally in very small steps, starting from plain C99 and pre-
serving generality at every step and providing new useful fea-
tures along the way.

4.1 Introduction

As the research on SVP was generalized from programming single multithreaded
cores to on-chip grids and heterogeneous systems, the need for a uniform, resource-
agnostic and multi-granularity intermediate language has become strong. This was
the original purpose of the Microgrid’s µTC, although the initial design of µTC has
been conducted in isolation from other works in this field and specialized to control
the Microgrid architecture -- not to mention that for implementation purposes µTC
has two separate syntaxes, the original µTC and its “SL” macro-like overlay. As
a result, the µTC/SL specification looks foreign, unique, complicated and only
remotely connected to current state-of-the-art concurrent language design. In other
words it was not very attractive.

As required by the ADVANCE project, an intermediate representation more
rich and general than the existing µTC/SL language is required to push the bound-
aries of our research. Simultaneously, modularity is key as different use cases have
different requirements on the language semantics and its implementations. For ex-
ample functional concurrency requires asynchronous function calls to “return” a
value, whereas data parallelism requires good control on locality but does not have
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a “return value”. Also, low-level concerns like scheduling should be accessible
and controllable for the programmer of higher-level language run-time systems.
As shown below, unifying these requirements in a uniform, modular interface is
possible. Additionally, modularity in the semantics and specification achieves sep-
aration of concerns in concurrency management: resource allocation, resource par-
titioning, thread distribution, scheduling, communication and synchronization can
be controlled separately by programs, but also understood and reasoned about sep-
arately.

As a result, this note proposes an incremental (re-)definition of a SVP languag
which starts from the plain C99 specification and incrementally adds the desired
language features in clearly isolated small steps.

As in most low-level concurrency language specifications, the following guide-
lines apply: language features that are not used do not entail any mandatory run-
time cost (neither space nor time). Functional and non-functional specifications
are clearly separated in the language to make (static) reasoning about functional
behavior in presence of concurrency possible.

Note
Existing casual µTC/SL users will likely have the impression that this spec-
ification designs a quite new language. In reality, it merely exposes and
sanitize language semantics that were embedded at various levels of the
SVP model, up from programming patterns down to the machine model
and the internal stages of our compilers. In other words, most of the
semantics presented here are ultimately already implemented on existing
SVP resources.
A section Expressing previous µTC semantics using the new paradigm ex-
plains how µTC/SL programs can be rewritten. The design is such that
translation can be automated.

4.1.1 Acknowledgements / related work

This thought exercise has been inspired and guided by previous work on Cilk,
Chapel, Fortress, the upcoming C1x standard, distributed operating systems, the
Apple-CORE and ADVANCE projects.

Ideas and criticisms have been contributed by the SAC and S-NET teams, the
Master thesis work of A. Matei, A. Visser and D. Prokesh, and many others.

4.2 Summary

The following section explain how the following are added to the language incre-
mentally:

• a standard header svp_syntax_aliases.h;

• implicit typing with auto;
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• split-phase asynchrony via async types and a sync primitive to wait for
completion;

• a special hold primitive;

• asynchronous function calls with spawn, with optional explicit delegation;

• fault tolerance with otherwise and synctest;

• parallel replication with create, with optional explicit delegation and place-
ment control;

• asynchronous channels where function call arguments can be computed con-
currently with the call, using special channel declarations and primitives
produce and consume;

• mixing parallel replication with channels, how to daisy-chain replication us-
ing channels ;

• re-expressing the existing µTC/SL constructs for thread functions and cre-
ate/sync using the new semantics.

Some added bonuses:

• Most of the syntax introduced is functionally equivalent to C code with the
new syntax removed, like in Cilk. When equivalence is not reached by syn-
tax removal, it can be reached with a (more-or-less) trivial text substitution.

• Apple-CORE’s “deadlock prevention” scheme can be formalized in the new
semantics and do not require behind-the-scene magic any more.

4.3 Environment

A standard header svp_syntax_aliases.h exists and can be optionally in-
cluded in programs.

4.4 Limited implicit typing

Summary Here we introduce a simple form of type inference into the language.

A. We specify that the following definition is present in svp_syntax_aliases.h:

#define auto _Auto

So that programs can use the syntax “auto” instead of “_Auto” in
all source code where the identifier auto is not otherwise used.
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B. We add the keyword auto to the language for variable definitions in
blocks, with name _Auto. This can be used as follows:

auto x = EXPRESSION;

The variable x is declared with the type of EXPRESSION. This is
equivalent to the following code using the non-standard, but widely
supported syntax typeof:

typeof(EXPRESSION) x = EXPRESSION;

Note
Contrary to the C++ feature of the same name documented in
http://www.open-std.org/jtc1/sc22/wg21/docs/
papers/2004/n1705.pdf, we do not propose to allow auto
in any place of a declaration using a more complex type. Instead, we opt
for the simple, fixed-format syntax:

declaration:

...
_Auto auto-declarator-list

auto-declarator-list:

auto-declarator
auto-declarator , auto-declarator-list

auto-declarator:

identifier = initializer

This restriction may be lifted in the future.

4.5 Split-phase asynchrony

Summary Here we introduce a separation between issuing a computation and
waiting for its completion.

A. We specify that the following definitions are present in svp_syntax_aliases.h:

#define async _Async
#define sync _Sync
#define detach _Detach

B. We add the type modifier _Async to the language. Like const or
restrict this modifies the type to which it is applied. (A precise
specification of the language semantics of async is given below.)
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An initialized object with an async type establishes a binding be-
tween an asynchronous expression evaluation and the eventual syn-
chronization on termination of the evaluation to use its eventual result.
We call it a promise for the eventual result type. For example, in:

int async x;

x is a “promise for int”, and int is the synchronized type of x.

It is valid to apply the qualifier _Async to the special type void,
which indicates that a bound void expression is to be computed asyn-
chronously.

Note
As described below, we are extending C’s derived types with async types.
An async type is said to be derived from its synchronized type, and it
(type-wise) incompatible with its base type.

C. We add the polymorphic primitive expression _Sync to the language:
_Sync takes an async expression as input, and evaluates to the result
of the computation associated with the async object. For example:

int async x = ....;

int y = sync x;

Informally, sync “waits” on completion of the asynchronous compu-
tation to which it is applied, and returns the computed value.

D. We add the polymorphic primitive expression _Detach to the lan-
guage: _Detach takes an async expression as input, and evaluates
to a void expression. For example:

int async x = ...

detach x;

The meaning of detach is to declare that the evaluation of the async
expression is to take place but its result can be discarded, i.e. no fur-
ther use of sync will be applied.

4.5.1 Specification for async

More than a mere type qualifier or storage specifier, async adds a new kind of
derived type to C. C’s derived types comprise array types, structure types, union
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types, function types and pointer types; we propose to introduce async types to this
category.

More specifically, async types are derived declarator types. An async type
may be derived from an object type, called its synchronized type. An async type
derived from the synchronized type T will be called “promise for T”; it describes
an object which references an asynchronous computation producing an object of
the synchronized type (see Model for async expressions and asynchronous com-
putations below). The construction of an async type from a synchronized type is
called “async type derivation”.

An async type derived from an incomplete type1 other than void is also an
incomplete type; void async is a complete type.

The phrase grammar for async extends C’s declarator grammar:

declarator:

pointer[opt] direct-declarator

pointer:

...
_Async

_Async pointer

While the async word appears in the same syntax position as C’s “*” pointer
syntax, its semantics are distinct. We specify them here.

First, recall the semantics of declarators in C:

A. In the following subclauses, consider a declaration “T D1” where T
contains the declaration specifiers that specify a type T (such as int)
and D1 is a declarator that contains an identifier ident. The type spec-
ified for the identifier ident in the various forms of declarator is de-
scribed inductively using this notation.

B. If, in the declaration “T D1”, D1 has the form identifier then the type
specified for ident is T.

C. If, in the declaration “T D1”, D1 has the form

( D )

then ident has the type specified by the declaration “T D” (a declarator
in parentheses is identical to the unparenthesized declarator).

Then we define the declarator semantics for async:

1Incomplete types lack information to determine their size and cannot be used for declarations
that also define objects.
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D. If, in the declaration “T D1”, D1 has the form

_Async D

and the type specified for ident in the declaration “T D” is “derived-
declarator-type-list T”, then the type specified for ident is “derived-
declarator-type-list async T”.

E. For two async types to be compatible, their base types must be com-
patible.

F. We extend C’s conditional operator2 as follows: either the second and
third operand satisfy the base C constraints, or they are both promises
to compatible types.

The following example demonstrates the difference between a “promise for a
constant value” and a “constant promise to a variable value”:

const int async promise_to_constant;
int async const constant_promise;

In this example, the contents of the object resolved by sync on promise_to_constant
shall not be modified, but promise_to_constant itself may be changed to
promise a different object. In contrast, constant_promise may not be modi-
fied.

The following example names several different types:

int async // promise for int
int async[3] // array of 3 promises for int
int (* async)[3] // promise for a pointer to an array of 3 int
int async (void) // type of a function with no parameters

// returning a promise for int
int (* async)(void) // promise for a pointer to a function

// with no parameters and returning int

4.5.2 Specification for sync and detach

A. We extend C’s phrase grammar as follows:

unary-operator:

...
_Sync
_Detach

B. The operand of the unary sync and detach operator shall have an
async type.

2for example: a ? b : c
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C. The synchronized type of the operand to sync and detach shall not
be an incomplete type.

D. As described above, sync denotes the resolution of a promise for an
object. It evaluates to the result of the bound asynchronous computa-
tion. If the operand has type “promise for type”, the result has type
“type”. If no computation is bound, the behavior of sync is unde-
fined.

E. The result of sync is not a lvalue. (In particular, it has no address and
cannot be modified.)

F. A detach expression is a void expression3.

4.6 Basic asynchrony

4.6.1 Asynchronous function calls

Summary Here we introduce the ability to perform function calls concurrently
with the caller, in a way similar to Cilk.

A. We specify that the following definition is present in svp_syntax_aliases.h:

#define spawn _Spawn

B. We add the keyword _Spawn to the language, which extends the func-
tion call syntax as follows:

spawn-expression:

_Spawn postfix-expression ( argument-expression-
list-opt )

async-def-expression:

...
spawn-expression

unary-expression :

...
async-def-expression

Here is an example use:

spawn foo(...) /* expands to _Spawn foo(...) */

3As per the C specification: the (nonexistent) value of a void expression (an expression that has
type void) shall not be used in any way, and implicit or explicit conversions (except to void) shall
not be applied to such an expression. [...] A void expression is evaluated for its side effects.
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If the function call would otherwise have return type R, the entire
spawn construct evaluates to an expression of type async R, so that
the return value can be ultimately retrieved by sync. For example:

int foo(int);
...
int async f = spawn foo(42);
...
int r = (sync f) + 123;

This is functionally equivalent to the same C code with async, spawn
and sync removed from the text:

int f = foo(42);
int r = (f) + 123;

The meaning of spawn is to allow the function call to compute asyn-
chronously with the caller thread.

C. We extend the spawn syntax with specifiers:

spawn-expression:

_Spawn spawn-specifier-list[opt] postfix-expression
( argument-expression-list-opt )

spawn-specifier-list:

spawn-specifier
spawn-specifier spawn-specifier-list

This syntax reads as follows: between spawn and the function call
syntax there can be additional syntax constructs that we call “spawn
specifiers”. These influence the semantics of the spawn construct as
described below.

4.6.2 Model for async expressions and asynchronous computations

Summary Here we explain the interactions between async expressions, spawn,
sync and detach.

For the purpose of specify the concepts introduced above more in more de-
tail, we introduce a distinction between async expressions and the asynchronous
computations themselves as follows:

A. A computation is a program entity representing the execution of an
expression evaluation scheduled non-deterministically. During its life-
time, it has a state and associated storage.

25



B. As a computation consumes resources, the question of resource recla-
mation must be addressed. We define that a computation can either
be synchronizable or detached. When synchronizable, its lifetime of
its associated storage extends to the first sync event that applies to it.
When detached, its lifetime extends to the end of its execution.

C. An async expression is a reference to a computation. As such, it has
two states: either bound or unbound. At the start of its lifetime, an
async expression is unbound. When bound, it refers to exactly one
computation.

D. The spawn construct defines a synchronizable computation and eval-
uates to a reference to this computation, i.e. a bound async expres-
sion.

E. Both the sync and detach constructs apply to synchronizable com-
putations via a bound async expression. The behavior is undefined
if they are applied to an unbound async expression or to a detached
computation.

When detach is applied to a synchronizable computation, the com-
putation becomes detached.

F. Exactly one sync or detach construct must be applied to a synchro-
nizable computation, irrespective of which async expression is used
to access it. If a computation is accessed twice by sync or detach,
the behavior becomes undefined.

G. The behavior is undefined if the last async expression bound to a
synchronizable computation reaches the end of its lifetime and neither
sync nor detach was applied to it. In particular, the computation
may not be scheduled at all.

The following example illustrates a situation where the behavior is undefined:

int async x = spawn foo(...);
int async y = x;
detach x;
int t = sync y;

Here the behavior is undefined because x and y refer to the same computation,
and both sync and detach are applied. In the following example:

{
int async x = spawn foo();
/* end of scope */

}
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the behavior is undefined because x reaches the end of its lifetime and neither
sync nor detach was applied.

Note
From a resource usage perspective, the state of a computation indicates
the responsibility for releasing the state and storage allocated to the com-
putation. When a synchronizable computation terminates before a sync
event, its storage stays allocated until a sync operation retrieves the re-
sults and releases the resources. If a synchronizable computation has al-
ready terminated before a detach event, its storage is simply released
by detach. When a detached computation terminates, it (conceptually)
releases its own resources. It is a race condition with undefined behav-
ior when the execution allows both a sync event and a detach event to
reach the same computation.

4.6.3 Split-phase asynchrony and real concurrency

The constructs and semantics described above and the rest of this document merely
expose concurrency but does not require that the associated computations be exe-
cuted fully concurrently.

In particular:

A. If an implementation does not support real concurrency for a given
spawn construct, a sequential schedule is still possible;

B. If an implementation does not support fully detached concurrency, it
can implement detach as an alias to sync without violating the
semantics.

4.6.4 Pseudo-asynchrony

Summary Here we introduce the ability to use the split-phase asynchrony seman-
tics without actual asynchrony. This not useful per se but is used later.

A. We specify that the following definitions are present in svp_syntax_aliases.h:

/* human namespace alia: */

#define here _LocalContext

/* syntactic sugar: */

#define hold spawn here

B. We add the polymorphic primitive expression _LocalContext (also
named here) to the language: here causes the spawn construct to
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perform the work locally (as function calls) in the caller’s computa-
tion context but evaluates to an async expression, such that the func-
tion return value is produced when the async expression is passed
through sync.

For example:

async int x = spawn here foo();
// also: hold foo();

int y = sync x; // equivalent to y = foo();

This syntax extends the C grammar as follows:

spawn-specifier:

_LocalContext

Note
The basic function calls syntax in C has equivalent semantics to “sync
spawn here”. This is intended.

4.7 Bundling work into families

4.7.1 Parallel replication

Summary Here we introduce simple but general support for parallelism.

A. We specify that the following definitions are present in svp_syntax_aliases.h:

/* human namespace aliases: */

#define linear(V, ...) _Linear(V, # __VA_ARGS__)
#define ispace(IterSpace) _SpawnIterSpace(IterSpace)

/* syntactic sugar: */

#define create(V, ...) spawn ispace(linear(V, # __VA_ARGS__))

#define parallel_for(V, ...) sync create(V, # __VA_ARGS__))

B. We add some spawn specifiers to the language:

spawn-specifier:

...
index-space-specifier

index-space-specifier:
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_SpawnIterSpace ( index-space-form )

index-space-form:

_Linear ( identifier , assignment-expression ,
assignment-expression , assignment-expression )

This syntax reads as follows. The list of spawn specifiers can con-
tain a construct of the form _SpanIterSpace(...). Between
the parentheses there can be a construct of the form _Linear(ID,
EXP, EXP, EXP). As an additional requirement not expressible in
the phrase grammar, the identifier listed in the _Linear construct
must appear in simple form at the start of the argument list in the
function call.

This construct expresses the concurrent application of a function call
over a range of values. The return value of each function call is ig-
nored; the entire spawn expression produces no value, but its type is
void async as it can run concurrently with the caller.

Each execution of the function call will provide a different index value
as first argument, over the specified range in an unspecified, non-
deterministic order. The expression parameters to _Linear, as well
as the declared type of the first argument for the called function type,
must be compatible scalar types as per the C definition.

This can be used as follows:

auto p = create(i, 0, 10, 1) foo(i, a, b);

...

sync p;

/* or, to synchronize immediately in the caller: */

parallel_for(i, 0, 10, 1) foo(i, a, b);

Both examples express that the function call foo(i, a, b) is it-
erated over the specified range in any order, possibly concurrently.
When using the parallel_for macro the parallel application is
immediately synced, whereas with create it can run concurrently
with other code in the caller.

When there are no data races, a create construct is functionally
equivalent to the C code obtained by replacing the construct with a
block expression containing an undeterministic C for loop, as fol-
lows:
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_Spawn _SpawnIterSpace(_Linear(i, range...))
foo(i, args...)

->
({

long i;
for (i = range... /* undeterministic order */)

foo(i, args...);
})

The work designated by such a construct is also named a family in
reference to previous work with SVP.

4.7.2 Replication with optional interruption

Summary Here we allow a replication to be interrupted non-deterministically by
the spawned work.

A. We specify that the following definition is present in svp_syntax_aliases.h:

#define interruptible _Interruptible

B. We introduce the following spawn specifier:

spawn-specifier:

...
_Interruptible

This specifier is only valid in combination with parallel replication.

When interruptible is specified, the return value of the function
call during parallel replication is not ignored, and is used as follows:

• the return type of the function must be convertible to _Bool;

• if any of the function calls returns a non-zero value, then when
the spawn expression completes, evaluation the function call may
not have been applied to some values in the range, non-deterministically;

The type of an interruptible spawn expression is _Bool async.
When passed through sync, it returns 0 if all function calls returned
value 0, and it returns 1 otherwise.

Here are some examples:

parallel_for(i, 0, 10, 1) interruptible foo(i, a, b);
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int b = parallel_for(i, 0, 10, 1) interruptible foo(i, a, b);
if (b != 0)

printf("interrupted!\n");

When there are no data races, an interruptible spawn is func-
tionally equivalent to the C code obtained by replacing the spawn with
a block expression containing an undeterministic C for loop, as fol-
lows:

_Spawn _SpanIterSpace(_Linear(i, range...)) _Interruptible foo(i, args...)

->
({

bool _b = false;
long i;
for (i = range... /* undeterministic order */) {

_b = foo(i, args...);
if (_b != false) break;

};
_b; /* return break status to context */

})

4.8 Non-deterministic evaluation order

Summary Non-determinism was introduced for schedules using async expres-
sions in Basic asynchrony, then for application order of many calls to the
same function with the Parallel replication. Here we introduce non-determinism
for the evaluation order of heterogeneous expressions.

Here we would like to overcome a limitation of the C language: it is not possi-
ble to order expression evaluation in C without providing a total order.

For example: a program may need to write location *p after performing func-
tion calls foo() and bar(), but without any local order between the calls to
foo() and bar(). It is desired to express this dependency such that a compiler
is free to reorder the calls to foo and bar wrt each other but ensuring that the
memory write is executed after both. In the base C language, it is not possible to
express such a construct.
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Note
One may argue here that evaluation order of function call arguments is not
specified, and thus it is possible to make the memory write dependent on
the two calls without order via a function call, e.g.:

inline void writemem(int *p, int value,
int a /* unused */, int b /* unused */)

{ *p = value; }

/* at point of use: */

writemem(p, value, foo(), bar());

In this example the calls foo() and bar() are not mutually ordered but
the memory write is dependent on both as the function arguments must be
evaluated before the function body is run.
However there are two issues with this construct. The first is that the con-
struct is cumbersome as it requires a different function definition for every
context where such a dependency needs to be expressed. Also the func-
tion must take as explicit arguments all the dependencies of the dependent
expression. The second issue is that while the C standard indicates that ar-
gument evaluation order is unspecified, most C compilers actually force an
order (either right-to-left or left-to-right) and never exploit the opportunity
for reordering.

A. We specify that the following definition is present in svp_syntax_aliases.h:

#define after _After
#define discard ((void)0) after

B. We extend the expression syntax as follows:

postfix-expression :

...
postfix-expression _After ( argument-expression-
list )

This construct is said to express a dependent expression. The evalua-
tion of the expression on the left hand side is dependent on the evalu-
ation of all expressions on the right hand side, in any order.

For example:

(*p = x) after (foo(), bar());

This expresses that the memory write on the left is dependent on the
calls foo() and bar() but without specifying an order between
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foo() and bar(). The expressions on the right hand side are the de-
pendencies of the entire expression and are evaluated in a non-deterministic
order at run-time.

Note
Care must be taken when manipulating async expressions at the right
hand side of after. For example, withe following code:

foo() after (spawn bar());

the behavior is undefined because the result of spawn is discarded before
either sync or detach is applied to it.

4.9 Asynchronous communication

4.9.1 Delayed argument passing

4.9.1.1 Example with spawn

Example:

int add(void) channels(in int x, in int y)
{

return (consume x) + (consume y);
/* functionally equivalent to:

int a = consume x;
int b = consume y;
int c = a + b;
return c;

*/
}

Point of use:

auto c = spawn add()
waiting_for (in int x, in int y);

produce to(c) x = foo();
produce to(c) y = bar();

int result = sync c; // wait for sum

This forces the arguments to be computed in this order (first x, then y). By
using after this order can be relaxed:

auto c = spawn add()
waiting_for (in int x, in int y);
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int result = sync c
after (

produce to(c) foo(),
produce to(c) bar()
);

New syntax:

• in: defines an input-only i-structure

• waiting_for: defines input i-structures for an async call

• produce: write i-structure

• consume: read i-structure

Equivalent functionally to C code where the function call is computed at the
point of sync. When no real concurrency is present, the waiting_for defini-
tion implies a data structure that captures the produced values until sync.

4.9.1.2 Specification for channel declarations

A. We specify that the following definitions are present in svp_syntax_aliases.h:

#define in _In
#define out _Out
#define inout _InOut
#define channels _DeclChannels
#define waiting_for _UseChannels

B. We extend the syntax of function declarations and definitions as fol-
lows:

direct-declarator:

...
direct-declarator ( parameter-type-list[opt] ) _DeclChannels
( channel-decl-list[opt] )

channel-decl-list:

channel-decl
channel-decl , channel-decl-list

channel-decl:

channel-specifiers declaration-specifiers declara-
tor
channel-specifiers declaration-specifiers abstract-
declarator[opt]
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channel-specifiers:

channel-direction

channel-direction:

_In
_Out
_InOut

C. We extend C’s derived types with function types with channels. A
function type with channels describes a function with specified return
type, number of type of its parameter, and its channel interface. For
example, in the following declaration:

int foo(int a) channels (in int c);

The object named foo is declared to have type int ()(int) channels(in
int).

Function types with channels are distinct from and incompatible with
regular function types. In particular, they cannot be used with C’s base
function call syntax (i.e. they can only be used with spawn).

D. We extend C’s derived types with channel types. A channel type de-
scribes a channel with specified value type and direction.

Channels establish a mean for the caller to communicate with the
callee after the point of call through async.

Note
In the basic form, channels can only be communicated through once (sin-
gle shot).

When a channel interface declaration appears in a function definition,
each channel declarations in the interface declares the corresponding
identifier in the block of the function body with channel type. For
example:

void foo(void) channels (in int c)
{

/* here "c" has channel type "in int" */

{
int c; /* this "c" shadows the function channel "c" */

}
}
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Function channel names and parameters are declared in the same scope,
so in particular a channel cannot have the same name as a parameter.

E. We specify that the following definition is present in svp_syntax_aliases.h:

#define pending _Pending

F. We add the type specifier _Pending to the language, to be used in
combination with _Async. Its syntax is:

pointer:

...
_Async _Pending ( channel-decl-list[opt] )
_Async _Pending ( channel-decl-list[opt] )
pointer

G. We extend C’s derived types with async types with channels. An async
type with channels is bound to an asynchronous computation returning
a given return type, and using a channel interface. For example:

float async pending(out int c) a = ...;

the object a is declared to have type float async pending(out
int).

Async types with channels are distinct from and incompatible with
base async types. Two async types with channels are compatible if
their channel interfaces are compatible and their synchronized types
are compatible. An async type with channels using an incomplete
channel type is also incomplete.

In an async type with channels, the names given to each channel are
part of the type, like field names are part of C’s aggregate types. (How-
ever, unlike C’s aggregate types, async types with channel use struc-
tural equivalence instead of name equivalence.)

H. We extend the spawn syntax:

spawn-expression:

_Spawn spawn-specifier-list[opt] postfix-expression
( argument-expression-list-opt ) channel-use[opt]

channel-use:

_UseChannels ( channel-decl-list[opt] )

The syntax reads as follows: after the function call syntax in a spawn
there can be an additional channel interface declaration.

When waiting_for is used, it causes the entire spawn construct to
have an async type with channels instead of a regular async type. In
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the resulting async type, the channel directions are reversed from the
function declaration. Here is an example:

int foo(void);
int bar(void) channels(in int);

auto a = spawn foo();
auto b = spawn bar() waiting_for(in int x);

In this example, object a has type async int, whereas b has type
async pending(out int x) int. For the second construct
the explicit syntax would be:

int async pending(out int x) b = spawn bar()
waiting_for (in int);

The call to function bar defines an input channel for bar which is
visible as an output channel in the caller.

Note
Because a base async type and an async type with channels are not compat-
ible, it is not possible to mix and match on both sides of the otherwise
operator.

Note
It is invalid to use here (see Pseudo-asynchrony above) with
waiting_for.

4.9.1.3 Reading from channels, in callee

A. We specify that the following definition is present in svp_syntax_aliases.h:

#define consume _Consume

B. We add the polymorphic primitive expression _Consume to the lan-
guage:

consume-expression:

_Consume unary-expression

unary-expression:

...
consume-expression
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This reads as follows: consume followed by an expression. The
entire construct is an expression. For example:

int foo(void) channels(in int x)
{

int a = consume x; /* consumes from foo’s channel "x" */

return a + 1;
}

This expresses reading from the designated input channel.

4.9.1.4 Writing to channels, in callee

A. We specify that the following definition is present in svp_syntax_aliases.h:

#define produce _Produce

B. We add the polymorphic primary expression _Produce to the lan-
guage:

produce-expression:

_Produce unary-expression “=“ *assignment-
expression

unary-expression:

...
produce-expression

This reads as follows: the word _Produce followed by an expres-
sion, the assignment operator and another expression. For example:

void foo(int x) channels(out int y)
{

produce y = x + 1;
}

The first expression must designate an output channel. This expresses
communication of the value of the second expression to the channel.

Like with C assignments, the entire expression evaluates to the righ
hand side, as a rvalue.

4.9.1.5 Writing to channels, in caller

A. We specify that the following definition is present in svp_syntax_aliases.h:

#define to _Peer
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B. We extend the syntax of _Produce as follows:

produce-expression:

...
_Produce _Peer ( assignment-expression )
identifier = assignment-expression

This describes constructs of the form produce to(EXP) ID =
EXP. The first operand must evaluate to a value of type async pending,
and the second operand must be a valid channel name in that type.

The construct describes providing the value of the third operand to the
designated channel of a async pending call.

For example:

int async pending(out int x) a = spawn foo(...) waiting_for(in int);

produce to(a) x = 123;

/* same as: */

auto a = spawn foo(...) waiting_for(in int x);

produce to(a) x = 123;

Note
Using sync on a async pending call without providing the channel
input values required by the functions has undefined runtime behavior. In
particular, deadlock can occur but is not guaranteed; the function may com-
pute using invalid channel inputs instead.

4.9.1.6 Reading from channels, in caller

A. We specify that the following definition is present in svp_syntax_aliases.h:

#define from _Peer

B. We extend the syntax of _Consume as follows:

produce-expression:

...
_Consume _Peer ( assignment-expression )
identifier
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This describes constructs of the form consume from(EXP) ID.
The first operand must evaluate to a value of type async pending,
and the second operand must be a valid channel name in that type.

The construct expresses reading from the designated input channel.

For example:

void foo(void) channels(out int);

auto a = spawn foo() waiting_for(out int x);

sync a;
int y = consume from(a) x;

/* the two last lines can be re-expressed as: */

int y = (consume from(a) x) after (sync a);

Note
Consuming from channels on an async pending call before using
sync has undefined runtime behavior. In particular, deadlock can occur
or the construct may evaluate to an undefined value.

4.9.1.7 Local multi-way communication with hold

When both here (_LocalContext) and waiting_for are used, the spawn
creates a local placeholder for channel values with type async pending:

• the function, call argument values, and values produced to out channels (in
in the async pending type) are preserved until the sync;

• at the point of sync, the function is called and the preserved values are
provided to the in channels within the function;

• after the sync, the values produced during the function calls can be consumed
from the out channel in the parent.

For example:

void add(void) channels(inout int xs, in int y)
{
produce xs = consume xs + consume y;

}
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/* at point of use: */

auto f = hold add() waiting_for(inout int a, in int b);
produce to(f) a = 123; // this reserves 123 for the call below
produce to(f) b = 456; // this reserves 456 for the call below
sync f; // call add(), make both values visible during call
int s = consume from(f) a; // read value set during the call to add

Importantly, the function arguments are evaluated during the spawn and not at
the point of sync, for example:

void foo(int x) channels();
int x = 10;

void async f = hold foo(x + 1) waiting_for();
x = 11;
sync f;

/* is equivalent to: */

int t = x + 1;
x = 11;
foo(t);

Similarly, if the function being called is referenced to by an expression (which
produces a function pointer), this expression is evaluated during the spawn and
reserved until the point of sync. For example:

void (*ftable)(void) channels();

int x = 1;
void async f = hold ftable[x]() waiting_for();
x = 2;
sync f; // calls ftable[1], not ftable[2]

4.9.2 Mixing channels with parallel replication

A. We extend the semantics of parallel replication as follows: all in
channels in the callee are connected to a single out channel in the
caller. A value provided by the caller is communicated to every call in
the parallel replication.

For example:

void copy(int idx) channels(in int *a, in int *b)
{
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(consume a) [idx] = (consume b) [idx];
}

/* at point of use: */

int A[N];

auto f = create (i, 0, N, 1) copy(i)
waiting_for (in int *a, in int *b);

produce to(f) a = A;
produce to(f) b = B;

sync f;

In this example, each call to copy receives the pointers to A and B.
Only the value of the formal parameter idx differs.

B. We extend the semantics of parallel replication as follows: The “in-
out” channel of the first call is connected to an “out” channel in the
caller usable before sync. For the second call onwards, each “inout”
channel is connected to the corresponding channel of the previous call.
The “inout” channels of the last call in the sequence are connected to
“in” channels in the caller consumable after sync.

For example:

void cumul (int idx, int *a) channels(inout int sum)
{
produce sum = a [idx] + (consume sum);

}

/* at point of use: */

int A[N];

auto f = spawn_parallel_apply (i, 0, N, 1)
cumul(i, A)
waiting_for (inout int sum);

produce to(f) sum = 0;

auto t = sync f;
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int x = consume from(t) x;

In this example, each call to cumul consumes the value produced by
the previous call. The caller produces the value consumed by the first
call before the sync, and consumes the value produced by the last
call.

4.10 Resource management

4.10.1 Local environment

Summary Here we extend the language to capture the fact programs run within
concurrent environments.

As described in ??, any instance of a function execution has two environment
boundaries:

• the local, actual (virtual) unique processor where this specific function call
instance is executing;

• the logical (virtual) processor group that was reserved by the caller for this
work.

We call the former the local processor and the latter the default place.

Note
These two resources can differ as follows: when delegation designates a
processor or processor group without specifying a change on the default
place, the default place is propagated from the caller to the callee, whereas
the local processor can change implicitly for every spawn.

For the purpose of use in the delegation primitives introduced later, we extend
the language as follows.

A. We specify that the following definition is present in svp_syntax_aliases.h:

/* human namespace aliases: */

#define PLACE_DEFAULT _DefaultPlace
#define PLACE_LOCAL _LocalPlace

B. We specify that the identifiers _DefaultPlace and _LocalPlace
pre-exist in the environment and evaluate dynamically to values suit-
able for use with the delegation syntax introduced above.

The meaning of these pre-defined names are as follows: when they are
evaluated, their value designates a valid place identifier for the default
place and local processor, respectively.
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These identifiers evaluate to rvalues, in particular they have no address
and cannot be assigned to. They can only be set for a callee by the
caller during delegation, using mechanisms described below.

Unless specified otherwise by a program, the default place is propagated im-
plicitly from the caller to the callee, and the local place/processor changes implic-
itly according to the actual scheduling performed.

4.10.2 Delegation

Summary Here we introduce the ability to perform function calls at a designated
resource.

A. We specify that the following definitions are present in svp_syntax_aliases.h:

/* human namespace aliases: */

#define map(Placement) _SpawnMap(Placement)
#define at(P) _AtPlace(P)

/* syntactic sugar: */

#define map_at(P) map(at(P))

B. We add some spawn specifiers to the language:

spawn-specifier:
...
placement-specifier

placement-specifier:
_SpawnMap ( map-specifier-list )

map-specifier-list:
map-specifier
map-specifier map-specifier-list

map-specifier:
_AtPlace ( expression )

This syntax reads as follows. The list of spawn specifiers can contain a
construct of the form _SpawnMap(...). Between the parentheses
there can be a list of mapping specifiers. One such mapping specifier
is a construct of the form _AtPlace(P), where P is an expression.
It can be used as follows:

spawn map_at(P) foo(...)

/* this expands to: _Spawn _SpawnMap(_AtPlace(P)) foo(...) */
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The meaning of this optional placement syntax is to place the compu-
tation at the designated resource. How resource identifiers are com-
puted is not discussed here. The placement syntax will be extended in
further steps below.

This construct is ignored if here or here_late is also specified.
However the place expression is still evaluated for side effects.

Specifying placement has no effect on the functional behavior of the
program.

When _AtPlace(P) is specified, the default place in each function
call instance becomes P, i.e. P is propagated implictly to the callee’s
_DefaultPlace.

4.10.3 Asynchrony with fault tolerance

Summary Here we extend the previous mechanisms to allow checking for suc-
cess/failure of asynchronous computations and provide alternatives.

A. We specify that the following definition is present in svp_syntax_aliases.h:

#define otherwise _Otherwise

B. We extend the spawn syntax as follows:

async-def-expression-list :

async-def-expression
async-def-expression _Otherwise async-def-expression-
list

assignment-expression :

...
async-def-expression-list

This operator relates to the lazy evaluation syntax of C’s && and as
follows: when it is reached during execution, the left hand side spawn
is attempted first. Only if this fails, the right hand side spawn is com-
puted instead. Any side effects expressed at the right hand side of
otherwise are not performed if the left hand side succeeds. Both
sides of otherwise must have the same async type.

Here is an example use:

int async x = spawn map_at(P1) foo(12)
otherwise

spawn here bar(45);

...
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int y = sync x;

In this example, a spawn of foo is attempted at place P1. If this fails,
a call to bar is computed inline and its value is reserved for later.
Which value is computed is eventually revealed by sync. From a
functional perspective, this example is equivalent to the C code ob-
tained by removing all right hand sides of otherwise and removing
the remaining µTC syntax:

int x = foo(12); // otherwise right branch removed
...
int y = x;

C. We specify that the following definitions are available in svp_syntax_aliases.h:

#define synctest _SyncTest
#define valid(X) (0 == (X))
#define undefined(X) (0 != (X))

D. We add the polymorphic primitive expression _SyncTest to the lan-
guage:

synctest-expression :
_SyncTest unary-expression

unary-expression :
...
synctest-expression

This is applied to an expression with an async type as input, and
returns an integer value.

The meaning of synctest is to wait on completion of the asyn-
chronous computation to which it is applied, and indicte whether the
computation was successful. It returns 0 only if the operation was
successful. The value can then be retrieved with sync as usual. For
example:

int async x = spawn foo(12);

...

int y;
if(valid(synctest x))

y = sync x;
else

y = ... ; // put substitute here, e.g. y = sync spawn bar(123)
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When there is no failure, this is functionally equivalent to the C code
where _SyncTest X is replaced by 0, and the other µTC constructs
are removed, e.g.:

int x = foo(12);
...
int y;
if (0 == 0)

y = x;
else .... /* irrelevant because 0 == 0 */

4.10.4 Distribution control in replication

Summary Here we allow a program to control how parallel replication is spread
over a target resource during delegation.

A. We specify that the following definitions are present in svp_syntax_aliases.h:

/* human namespace aliases: */

#define spread(N) _Spread(N)

/* syntactic sugar: */

#define map_spread(N) map(spread(N))
#define map_spread_at(P, N) map(at(P) spread(N))

B. We add some new map specifiers to the spawn specifier syntax:

map-specifier:
_Spread ( assignment-expression )

This syntax reads as follows: inside the _SpawnMap syntax, a con-
struct of the form _Spread(EXP) can appear.

The meaning of this optional control is to control how parallel execu-
tion is deployed onto the target resource. The parameter to spread
describes a “blocking factor”, ie. a hint to maximum chunking fac-
tor for the mapping of concurrency to processing agents at the target
resource.

This construct is ignored if _LocalContext is also specified. How-
ever the spread expression is still evaluated for side effects.

4.10.5 Resource partitioning via restriction on the default place

Summary Here we introduce a rough mechanism to allow a program to partition
resources during delegation, by restricting the default place of the spawned
work.
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A. We specify that the following definitions are present in svp_syntax_aliases.h:

/* human namespace alias: */

#define narrow(N) _Narrow(N)

/* syntactic sugar: */

#define map_distribute(N, M) map(spread(N) narrow(M))

#define map_distribute_at(P, N, M) map(at(P) spread(N) narrow(M))

B. We add some new map specifier to the spawn specifier syntax:

map-specifier:

_Narrow ( assignment-expression )

This syntax reads as follows: inside the _SpawnMap syntax, a con-
struct of the form _Narrow(EXP) can appear.

The purpose of this optional control is to implictly segregate each
function call instance onto disjoint subsets of the computing resources.

Its meaning is to cause the default place of the spawned work to be
computed as follows. We use the following definition:

The designated target place, is where the entire delegation
takes place; either explicitly given with _AtPlace(P) or
implicitly the caller’s _DefaultPlace.

When narrow(N) is specified, then for each function call instance
in the spawned work, given the specific instance’s _LocalPlace,
the new value for _DefaultPlace becomes the subset of the desig-
nated target place that is rooted N levels up from the new _LocalPlace.

For example, if the designated target is structured as follows:

root

....

c0 c1

p0 p1 p2 p3

Then _Narrow(1) will cause the default place in every call instance
running on p0 and p1 to be the sub-tree rooted at c0, and the default
place of every instance running on p2 and p3 to be the sub-tree rooted
at c1.
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Note
The behavior is left unspecified if N is too large or negative. This might be
refined later.

This construct is ignored if _LocalContext is also specified. How-
ever the argument expression is still evaluated for side effects.

4.11 Mutual exclusion

A. We specify that the following definitions are present in svp_syntax_aliases.h:

/* human namespace alias: */

#define exclusive_at(P) _ExclusiveAt(P)

B. We add some spawn specifiers to the language:

spawn-specifier:

...
exclusive-specifier

exclusive-specifier:

_ExclusiveAt ( expression )

The syntax reads as follows. The list of spawn specifiers can contain
a construct of the form _Exclusive(P), where P is an expression.
It can be used as follows:

spawn exclusive_at(P) foo(...)

/* this expands to: _Spawn _ExclusiveAt(P) foo(...) */

The parameter to _ExclusiveAt is the target exclusive place.

This meaning of this optional syntax is to indicate that the computation
cannot execute concurrently with any other computation placed at the
same target exclusive place.

The _Exclusive specifier cannot be used in combination with _SpawnMap.

4.12 Expressing previous µTC semantics using the new
paradigm

4.12.1 Thread functions

• thread functions are converted to regular functions with return type _Bool
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• uses of thread break are replaced by return 1

• uses of return in a thread function are replaced by return 0

• an implicit return 0 is inserted at the end of the control flow for each
thread function body

• for each thread function a long parameter is inserted at the start of the
parameter list, and the thread index variable is initialized to that parameter

• global thread parameter definitions are replaced by an “in” channel decla-
ration

• shared thread parameter definitions are replaced by an inout channel dec-
laration

• each read-use of a thread parameter p is replaced by a consume p con-
struct;

• each write-use of a thread parameter p is replaced by a produce p con-
struct.

For example, the following µTC code:

thread fibo(shared int p, shared int p2, /*global*/ int* fib)
{

index i;
int n = p + p2;
p2 = p;
p = n;
fib[i] = n;

}

would lower to:

void fibo(long _I) channels(inout int p, inout int p2, in int* fib)
{

long i = _I;
int n = consume p + consume p2;
produce p2 = consume p;
produce p = n;
(consume fib)[i] = n;

}

50



4.12.2 Create / Sync

Constructs of the form:

create(fid; P; start; limit; step; block)
fun ( args ...)

would lower to:

auto fid = create(i, start, limit, step) /* range */
map_spread(P, block) /* blocking factor */

fun (i) /* application */
waiting_for (chans...); /* i-structure list */

produce to(fid) a = ...;
produce to(fid) b = ...; /* etc */

Then µTC’s sync is converted to either the new sync or synctest depend-
ing on whether the family exit status is used.

4.12.3 Re-expressing deadlock prevention with the new semantics

Constructs of the form:

create(fid; P; start; limit; step; block)
fun ( args ...)

would lower to:

auto fid = create(i, start, limit, step) /* range */
map_spread(P, block) /* blocking factor */
fun (i); /* application */
waiting_for (chans...)

otherwise
create(i, start, limit, step) /* range */

here
fun (i); /* application */
waiting_for (chans...)

produce to(fid) a = ..., to(fid) b = ...; // etc

When the first branch of otherwise fails, here (_LocalContext, a.k.a.
hold) causes the 2nd spawn to capture all the data needed for the work and delay
the computation until the point of sync.
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4.13 Memory consistency

We recognize two classes of functions (with or without channels) when used in a
spawn expression:

• functions with known dependencies: the set of all objects accessed by the
function are indicated somehow;

• functions with unknown dependencies: some dependencies are unknown or
incompletely characterized.

Any function is considered to have unknown dependencies at the point of
spawn, unless either of the following is true:

• the function definition is visible at the point of spawn, and static analysis can
derive all the function dependencies; or

• the function has only fully determined argument and channel types (i.e. no
pointers or aggregates containing pointers) and is declared to be enclosed.

Note
Aggregates containing arrays are determined types for the purpose of this
condition. However, as arguments and channel values are copied when
communicated to the callee, this is inefficient to pass large objects. Syntax
to pass large determined types by reference will be provided later.

Note
Syntax to express “enclosedness” will be provided later; the purpose of
this annotation is a programmer-provided guarantee that the function does
not access global variables or have side-effects on memory that may be
visible to the caller.

Knowledge about function dependencies impacts the implementation of spawn
as follows:

• if an explicit target place is indicated (e.g. with map_at) for delegation, this
is used always. If the target place lies in a different consistency domain from
the caller’s local place, the behavior of the program becomes undefined.

• otherwise (no explicit target place is indicated):

– if a function has unknown dependencies, or if the memlocal spawn
specifier is expressed, then the spawn will force the selection of a target
place within the same consistency domain as the caller’s local place;
otherwise
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– if all dependencies are known and memlocal is not expressed, then
the spawn may select a target place in a different consistency domain
from the caller’s local place. Additionally, parallel replication can span
multiple consistency domains.

4.14 Optional compatibility with popular non-standard C
extensions

4.14.1 Extending GNU’s block expressions with spawn

There is a GNU C extension called “expression blocks”. This has the syntax ({
... }). It can contain declarations and statements but is evaluated like an ex-
pression: the type and value of the entire block expression is the type and value of
the last expression evaluated inside the block. For example:

int x = ({ int y = 21; y + y; });

In this example the block expression evaluates to the int value 42.
We could extend this syntax as follows:

A. if the last expression of a block expression has type async, then
the construct is valid and the entire block expression evaluates to this
async expression. For example:

int async x = ({ .....; E; }); // valid if E has type int async.

B. if the last expression of a block expression is a spawn, then the block
expression is a valid operand for the otherwise operator. For ex-
ample:

async int x =
({ P1 = ...; spawn map_at(P1) foo(123); })

otherwise
({ P2 = ...; spawn map_at(P2) bar(456); })

otherwise
spawn here baz(678);

In this example, a spawn of a call to foo is attempted at place P1. If
this fails, P2 is computed an a spawn of a call to bar is attempted at
P2. If this fails, baz is called in place and its value is reserved for the
later sync.

Such block expressions can be used e.g. to avoid evaluating the place
identifier for a right hand side to otherwise
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4.14.2 Anonymous closures with Apple’s blocks and C++0x lambda

In 2010 Apple has introduced the technology Grand Central Dispatch, which in-
cludes a conceptual extension to the C language: “blocks”. These define anony-
mous closures that capture dependencies implicitly from the point they are defined
and can receive additional arguments at their point of use. Here is an example:

dispatch_apply(count, dispatch_get_global_queue(0, 0), ^(size_t i){
results[i] = do_work(data, i);
});

total = summarize(results, count);

In this example, the 3rd argument to dispatch_apply() is a closure with
a pending argument of type size_t.

Similarly the upcoming C++ standard defines anonymous closures:

std::vector<int> some_list;
int total = 0;
int value = 5;
std::for_each(some_list.begin(), some_list.end(), [&, value](int x) {

total += x * value * this->some_func();
});

In this example, the construct [&, value](int x) { ... } defines a
closure with a pending argument of type int, that captures all its dependencies by
reference except value which is captured by value.

As a possible extension to our SVP language, we could support dispatching
GCD blocks and/or C++-like closures with spawn.

4.15 Summary of language extensions

4.15.1 Summary of constructs for basic asynchrony

Alias Keyword Position in syntax Described in
auto _Auto declaration Limited implicit typing
async _Async declarator Split-phase asynchrony
sync _Sync unary-expression Split-phase asynchrony
detach _Detach unary-expression Split-phase asynchrony
spawn _Spawn unary-expression Asynchronous function calls
here _LocalContextspawn-specifier Pseudo-asynchrony
after _After postfix-expression Non-deterministic evaluation

order
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Syntactic sugar Expansion
discard (void)0 after

hold spawn here

4.15.2 Summary of parallel replication constructs

Alias Keyword Position in syn-
tax

Described in

ispace _SpawnIterSpacespawn-specifier Parallel replication
linear _Linear index-space-form Parallel replication
interruptible_Interruptiblespawn-specifier Replication with optional inter-

ruption

Syntactic sugar Expansion
create(...) spawn

ispace(linear(...))

parallel_for(...) sync create(...)

4.15.3 Summary of channel-based communication

Alias Keyword Position in syn-
tax

Described in

channels _DeclChannelsdirect-declarator Specification for channel decla-
rations

in _In channel-direction Specification for channel decla-
rations

out _Out channel-direction Specification for channel decla-
rations

inout _InOut channel-direction Specification for channel decla-
rations

pending _Pending type-specifier Specification for channel decla-
rations

... continued on next page
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Alias Keyword Position in syn-
tax

Described in

waiting_for_UseChannelsspawn-expression Specification for channel decla-
rations

consume _Consume unary-expression Reading from channels, in
callee, Reading from channels,
in caller

produce _Produce unary-expression Writing to channels, in callee,
Writing to channels, in caller

from, to _Peer produce-
expression,
consume-
expression

Writing to channels, in caller,
Reading from channels, in
caller

4.15.4 Summary of resource management constructs

Alias Keyword Position in
syntax

Described in

map _SpawnMap spawn-
specifier

Delegation

at _AtPlace map-specifier Delegation
otherwise _Otherwise async-def-

expression
Asynchrony with fault tolerance

synctest _SyncTest unary-
expression

Asynchrony with fault tolerance

spread _Spread map-specifier Distribution control in replication
narrow _Narrow map-specifier Resource partitioning via restriction on

the default place
exclusive_at_ExclusiveAtspawn-

specifier
Mutual exclusion

Syntactic sugar Expansion
map_at(...) map(at(...))

valid(...) (0 == (...))

undefined(...) (0 != (...))

map_spread(...) map(spread(...))

... continued on next page
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Syntactic sugar Expansion
map_spread_at(...) map(at(...) spread(...))

map_distribute(...) map(spread(...)
narrow(...))

map_distribute_at(...)map(at(...) spread(...)
narrow(...))
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Chapter 5

SL annotations for
extra-functional properties and
requirements

Key: adv14

Status: Draft

Date: 2010-11-15

Authors: Raphael ’kena’ Poss

Source: http://notes.svp-home.org/adv14.html

Version: adv14.txt 4148 2010-11-16 13:13:33Z kena

Abstract: In this note, we propose to extend the SL language as in-
troduced in ?? with a system where function definitions and use
points can be instrumented with arbitrary annotations usable by
a run-time system.

5.1 Introduction

In ADVANCE there are two use cases for extra-functional properties and require-
ments:

• during run-time behavior analysis, they are used to construct a TLJ model;

• during run-time concurrency management, they are used to facilitate/opti-
mize placement of computations to execution resources (hardware cores /
interconnects).

As the name implies, extra-functional properties and requirements encompass
information that cannot be derived from the functional specification of work units.
In our setting (see ??), the unit of work is defined by families of threads.

We are interested in the following, among others:

58

http://notes.svp-home.org/adv14.html


• properties:

– physical size (bytes/words/etc...) of the data consumed and
produced by a family, as this is required to define the through-
put of a computation;

– the replay factor of the family, which estimates how often the
algorithm re-accesses its input data (e.g. in multi-pass code);
this is defined for each input item and is relevant for mod-
elling latency (number of steps per input item), and through-
put/jitter (impact of caching effects);

– the locality factor of the family, which estimate the number
of different memory locations accessed by individual steps
of the computation; this impacts throughput/jitter (caching
effects).

• requirements:

– whether a family can escape, i.e. may request and use exe-
cution resources outside of its initial placement;

– whether all internal and external data dependencies of a fam-
ily are known, and the whether the family is enclosed (see
??, “memory consistency” for a complete definition), i.e.
whether the run-time system can assume that all communi-
cation is characterized by the external interface of the family
(this information places constraints on placement of a family
w.r.t. it parent thread).

We consider the points above to be only examples. We expect that the remain-
der of the project will reveal additional types of extra-functional properties and
requirements which will need to be integrated.

Therefore, instead of proposing a fixed scheme to express extra-functional as-
pects with predefined semantics, we propose a generic and extensible scheme that
integrates with our compiler technology but does not require future changes to the
compiler after its initial implementation.

The scheme is articulated as follows:

• in the source code of programs, annotations can be expressed by means of
the C “#pragma” syntax. However, instead of interpreting the annotation
in the C/SL compiler, we delegate the annotation to an external annotation
system implemented as an external, dynamically loadable/configurable com-
piler extension;

• during execution, points where families are defined can be instrumented to
reflect on annotations and influence the execution or otherwise observe the
behavior.
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5.2 Static and dynamic aspects of extra-functional require-
ments and properties

Families are defined by a function, some argument values, communication end-
points and an optional placement. As such, a family can only be completely char-
acterized by bringing together the following sources:

• available at compile time:

– information about the definition of the function being run in the family;
this is fully determined at the point the function is defined,

– information about the argument types given at the point of use,

– (optionally) information about the definition of the function enclosing
the point of use;

• available at run-time:

– information about the argument values given at the point of use,

– information about placement and communication endpoints.

Both of these latter points are fully determined only after the point of use is
reached during execution.

For example, an input size is only known by looking at the input dynamically
when a family creation point is reached during execution. Moreover, usually some
other variable (argument) must be read to determine this input. This is why any
system to describe extra-functional requirements and properties ultimately needs
to be active during execution at the creation points.

5.3 Language-side specification

5.3.1 Identifying spawn points

A. We specify that the following definitions are present in svp_syntax_aliases.h:

#define tag(Id) _SpawnTag(Id)
#defined namedcall(Id) sync spawn here tag(Id)

B. We add a spawn specifier to the language:

spawn-specifier:

...
_SpawnTag ( identifier )

This syntax reads as follows: the list of spawn specifiers can contain a
construt of the form _SpawnTag(ID). For example:
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int foo(int x) {
int async a = spawn tag(first) bar(x);
int async b = spawn tag(second) bar(x);
return sync a + sync b;

}

Here is another example:

int fib(int n) {
if (n < 1) return 1;

return namedcall(p1) fib(n-1)
+ namedcall(p2) fib(n-2);

}

This construct allows to give an optional name to an occurrence of
spawn. When it is used, the identifier denotes this specific point of
spawn in the context of the function where spawn occurs.

A spawn identifier lies in a different name space than other C iden-
tifiers. Like C’s label names, it has function scope: it can be used
anywhere in the function where it appears, is declared implicitly by its
syntactic appearance, and the same identifier cannot be used to name
two distinct spawn constructs in the same function.

5.3.2 Program-specified annotations

A. We introduce a new pragma syntax to the language:

#pragma annotate_def(CSTR, CSTR {, ARG}...)

This syntax reads as follows: the phrase “#pragma annotate_def(”
followed by a character string, a comma, another character string, then
optionally a comma and a comma-separated argument list, and finally
terminated by a closing parenthesis. Each argument in the argument
list can have the syntactic form of an expression.

This denotes an annotation for a function definition.

The first character string specifies which annotation system will cap-
ture the annotation. This is described below. The second character
string specifies the name of the function being annotated. A definition
for this function must be present in the translation unit. The additional
arguments can be identifiers or expressions and are provided to the
selected annotation system as-is.

B. We introduce a new pragma syntax to the language:

#pragma annotate_use(CSTR, CSTR, CSTR, {, ARG}...)
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This syntax reads as follows: the word #pragma annotate_use(
followed by three character strings separate by commas, followed op-
tionally by a comma and an optional comma-separated argument list,
and finally terminated by a closing parenthesis. Like for annotate_use,
Each argument in the argument list can have the syntactic form of an
expression.

This denotes an annotation for a function use.

The first character string specifies the name of the annotation system
to use. The second character string specifies the name of the function
containing the use point. A definition for this function must be present
in the translation unit. The third character string specifies the spawn
tag being annotated. The specified function’s body must contain a
spawn tag definition with that name. The additional arguments can be
identifiers or expressions and are provided to the annotation system
as-is.

5.4 Compiler-side specification

5.4.1 Annotations for function definitions

The translation environment would support the following architecture:
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After a translation unit goes through preprocessing, syntax and semantic analy-
sis, an abstract syntax tree is constructed. For every #pragma annotate_def,
an abstract syntax tree of the optional pragma argument list is constructed as well.

Then for every different annotation system name requested through #pragma
annotate_def, the compiler should load an externally defined extension mod-
ule containing an annotation service for definitions. This service defines a single
function annotate_def which takes as input:

• the abstract tree for the designated function; and

• the abstract tree for the optional pragma arguments.

This function can then compute and optionally return an annotation which is
preserved alongside the object code towards an annotation database for the pro-
gram. By design, the annotation system cannot influence further translation of the
definition.

(The functional semantics of a program should be preserved when all annota-
tion pragmas are removed from the program source).
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5.4.2 Annotations for function uses

The translation environment would support the following architecture:

Like for Annotations for function definitions above the system is enabled after
semantic analysis. For every different annotation system name requested through
#pragma annotate_use, the compiler should load an externally defined ex-
tension module containing an annotation service for uses. This service defines a
single function annotate_use which takes as input:

• the abstract tree for the designed spawn; and

• the abstract tree of the function enclosing the spawn; and

• the abstract tree for the prototype declaration for the function used by the
spawn; and
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• the abstract tree for the optional pragma arguments.

This function can then compute and optionally return an annotation which is
preserved alongside the object code. Again, the annotation system cannot influence
further the translation.

5.4.3 Implementation notes

Our proposed implementation (see ??) uses the CIL framework for reading and
analyzing C code with language extensions. This framework is written using the
functional language ML. It defines ML types for all abstract concept in the C lan-
guage semantics.

To implement our annotation scheme, we propose that compiler extension mod-
ules that define annotation systems are written as ML modules. These would con-
tain funcitons with the following interface:

val annotate_def:
Cil.fundec * Cil.attribute
-> string

val annotate_use:
Cil.instr * Cil.fundec * Cil.varinfo * Cil.attribute
-> string

For more information about CIL types, see http://hal.cs.berkeley.
edu/cil/.

5.5 Propagating annotations from compilation to execu-
tion

We propose an interchange format and tool chain features that support communi-
cating non-functional requirements between the compiler tools and the SVP mid-
dleware.

Instead of bundling the annotation data within the executable code itself, we
propose to store the annotations in binary databases that will accompany executable
modules. The proposed format is UNIX dbm (cf [?]), a simple yet efficient disk-
based hash table implementation suitable for fast loading and access by readers.
The proposed use is to have a different annotation database for each implementa-
tion of a given program component (there can be multiple implementations when
the component is compiled for multiple targets). The dbm files would then need to
be shipped along the executable formats to the execution platform, and would be
loaded automatically by SVP as needed.

We justify the choice to store the annotations separately from the program code
as follows:
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1. We deem desirable to keep the ability to introduce annotations after
compilation.

2. Not all executable formats on all platforms allow arbitrary interleaving
of code with annotations within the executable file. Even for those
formats that allow such interleaving the encoding of annotation and
code sections differs between operating systems and binary formats.

3. There exists many tools to query and modify dbm files, while tools to
query and modify executable files are scarce.

5.6 Run-time specification

In the proposed SVP implementation (??) we propose to integrate reflection on
annotations. This will take the form of an API with the following services:

• query for annotations on function definitions. This takes the name of a func-
tion, looks up the annotation in the annotation database and caches the result
for subsequent queries.

• query for annotations on function uses. This takes two forms:

– observation of static annotations: this takes the name of a function and
optionally the name of a use point, and looks up the annotation for
this use point (or all use points in the function if no use point name is
given). The result is cached for subsequent queries.

– callback for dynamic introspection: this registers a service to the SVP
run-time system for a given (set of) function(s) and use point(s), which
is called dynamically whenever the specified use point(s) is(are) reached
during execution. The callback function is given the static annotation
as input, as well as run-time information about argument values, place-
ment and communication endpoints.

The exact definition of this API will be refined as the partners express interest
in using this interface.
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Key: adv1
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Abstract: This note describes how physical hardware is described in
terms of virtual resources in the ADVANCE “hardware virtual-
ization layer”.

6.1 Inventory of actual hardware

The ADVANCE project intends to target the following hardware:

• multicore systems (SMP, cache-coherent)

Examples:

– Niagara T2-based systems (8T x 8C x 1 CPU, visible as 64 virtual
cores)

– 1, 2 or 4-core places in a Microgrid

• multicore NUMA systems (optionally cache-coherent)

Examples:

– SunFire X4440 (4-core x 4 CPUs, visible as 16 virtual cores)
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– Intel’s Single-Chip Cloud (2-core frequency islands x 4-island voltage
clusters x 6 clusters, visible as 48 virtual cores)

– 8-core or larger places in a Microgrid

• clustered networks of multicores

Examples:

– LISA cluster: 8-core x 2 CPUs x N nodes, mesh topology

– multiple places in a Microgrid

• multi-core systems attached to one or more accelerators

Examples:

– GPGPUs (large data parallelism, e.g. CUDA-compatible hardware)

– FPGAs (reconfigurable hardware)

– Specialized I/O cores in a Microgrid

6.2 Overview of the approach

The goal of the approach is to abstract the properties of actual hardware while re-
taining control over the placement of data and computations over them, and letting
programs introspect and filter at run-time the properties of the hardware they are
mapped onto.

The overall approach can be summarized as follows:

• the actual hardware is described in terms of a tree of abstract nodes. The
abstract nodes in this tree capture various visible properties of resources, es-
pecially locality between hardware components, the programming models
at each level, and clustering of components that have similar performance.
However, it does not necessarily describe the actual structure of the hard-
ware.

We call this tree the virtual hardware description tree, short name hardware
tree.

• From this tree of virtual hardware, software can perform selections. Selec-
tions are sub-trees of the description tree that identify which resources are
usable by software. Selections are described by a tree separate from the de-
scription tree; its node set is a sub-set of the node set of the description tree,
and its edge set is a sub-set of the edge set of the description tree.

We call such selection trees virtual hardware places, short name virtual
place.

• When delegating software explicitly to a place in the SVP programming
model, the following two items must be provided:
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– the entire selected place, a reference to a virtual place (tree structure);

– the specific execution place, a reference to the leaf node of the selected
place where execution actually occurs. This must be part of the selected
place.

(Conversely, threads can introspect both their selected place and their exe-
cution place. The selected place can be further refined into smaller virtual
places, and work can be delegated to other leaf nodes of the current selec-
tion.)

Note
How selections interact with the placement of threads during execution is
the domain of mapping, which is outside of the scope of this note. This
will be explored in a later note.

Here is an example. Starting from the following virtual hardware description
tree:

One can select the following two virtual places:

From this point, a thread A can be created at node c2, with the orange selection
rooted at n0; simultaneously, a thread B can be created at node c1 with the green
selection which also happens to be rooted at n0.

Selection visible from thread A. Selection visible from thread B.
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While thread A is running, it can further refine its current selection to a virtual
place rooted at s0 and delegate work to c0 (because both c0, and c2 where it is
running, are part of the entire selection where A was created). However, it cannot
create a selection that would include c1 or c3.

6.3 Virtual hardware description tree

The hardware tree is unique for a given collection of hardware resources. This tree
is visible from programs, i.e. it can be introspected/queried by programs running
within the system. However, it is not transformable by programs. Its purpose is
to describe hardware resources: it might evolve dynamically due to changes in
the hardware resources, but behaves as a dynamic, read-only data structure for
programs running within the system.

The tree is composed of nodes that represent the programmable structure of
the hardware system. Each node has a type. All nodes of a given type have the
same attributes (set of keys for key/value annotations). There are two categories of
node types:

• processing elements (PEs), independently addressable units on a delegation
network where execution of threads can be carried out, and

• logical grouping nodes, which provide information about the structure of the
hardware but do not carry out the execution of threads.

PEs can have internal concurrency; that is, multiple threads delegated to one
PE might run simultaneously in time. However, internal concurrency within one
PE cannot be independently addressed (i.e. one cannot choose which hardware
thread of execution within a node executes a given software thread).

Note
For example, a Microgrid core forms one PE, with further 256 units of
internal concurrency. A GPGPU core is such another PE.

PEs can be of either of two types:

• general-purpose PEs, where each unit of internal concurrency can carry out
a separate programmable computation;

• specialized PEs, where each unit of internal concurrency might not be able
to carry out separate programs (e.g. SPMD, GPGPU core), or where the
programs are fixed (e.g. DSP, FPGA).

We specify that any specialized PE has at least one general-purpose PE as host.
Delegation of work to a specialized node must always be issued by a thread running
on one of its hosts, whereas delegation of work to general-purpose node can happen
from any other GP node (restrictions due to selections apply, see below).
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The other category of node types are “grouping nodes”. We do not identify
a specific hierarchy of grouping nodes at the SVP level; instead, the differents
“kinds” of grouping nodes will be identified by annotations in the virtual hardware
tree.

We envision the following concepts will be captured somehow:

• SMP nodes: a possibly-heterogeneous collection of GP nodes with possibly-
non-uniform access to a single memory; however, the memory is cache-
coherent with implicit consistency;

• nc-SMP nodes: a possibly-heterogeneous collection of SMP nodes accessing
a single memory, with non-coherent caches and/or explicit memory consis-
tency;

• cluster nodes: a possibly-heterogeneous collection of cluster, NUMA or
SMP nodes, with distributed memory.

As stated initially, nodes are intended to virtualize hardware and provide uni-
form programming models, as well as locality (either of communication, caches,
etc). Within a grouping node, the sub-nodes are ordered linearly and the order
should be chosen so that nodes close to each other in this linear order should be
local to each other. A “good” linear ordering in a 2D or 3D mesh can be obtained
e.g. using a Hamiltonian path. If a network topology does not suggest a trivial
ordering (e.g. it is not connected), this might suggest a different hardware tree
structure where locality is represented by sub-trees.

Finally, grouping nodes should also indicate clusters of run-time performance.
Within a grouping node, the sub-node should be of similar concurrency granularity
and offer similar throughput and latencies in terms of speed and interconnects.
Again, if a hardware structure does not suggest homogeneity, multiple grouping
nodes should be used to represent sub-clusters where homogeneity can be obtained.

6.3.1 Examples

In this section we illustrate how specific hardware configurations can be described
with the proposed system.

6.3.1.1 Small, flat multi-cores

Consider the following schema, describing (approximately) the SunFire X4440
hardware from Sun:
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The cassandra server at UvA is an instance of this configuration.
It consists of 4 AMD Opteron processors, each with its own memory con-

troller and L3 cache, connected together on a shared memory bus implementing
the MOESI coherency protocol (this implements global cache coherency transpar-
ently from programs). Each processor contains 4 x85-64 cores, each with its own
FPU and L1/L2 caches. Frequency can be scaled independently for each processor
down to 50% of the maximum.

Each of the 16 cores is visible as an individual, addressable processor by the
operating system.

From the point of view of programs, this system has 16 units of effectively pro-
grammable concurrency; which are symmetric with regard to access to memory. A
straightforward representation in our description system could be thus as follows:

i.e. 16 general-purpose PEs as children of a single SMP grouping node. The
linear order of the PEs can be set so that adjacent nodes reflect adjacent cores on
chip. The (virtual) attributes of the nodes can be documented as per the hardware
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specification.

One could note here that this choice of description does not take into account
the memory hierarchy. An additional level in the tree could be introduced e.g. to
represent clusters around L3 caches.

As another example in this category, we take a Niagara T2-based system as per
the specifications from Sun:

This hardware consists of a single processor with a single L2 cache and external
memory interface. The L1 caches are maintained coherent by an internal, high-
speed snoop bus. The processor contains 8 cores, each core with its own FPU. Each
core implements 8 hardware threads, scheduled independently from each other.

Each of the 64 hardware threads is visible as an individual, addressable proces-
sor by the operating system.

From the point of view of programs, this system has 64 units of effectively
programmable concurrency; which are symmetric with regard to access to memory.
A straightforward representation in our description system could be as follows:
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i.e. 64 general-purpose PEs as children of a single SMP grouping node. The
linear order of the PEs can be set so that adjacent nodes reflect adjacent threads
on chip. Again, the (virtual) attributes of the nodes can be documented as per the
hardware specification.

This approach does not consider clustering of cores arounds FPUs. As this
could be relevant for performance, it may be desirable to add an additional inter-
mediate level to represent groups of 8 hardware threads (i.e. one group per physical
core).

6.3.1.2 Networked multi-cores

The LISA cluster at the SARA computing center in Amsterdam is publicly avail-
able for research projects. It consists of homogeneous nodes each containing two
Intel Xeon cores.

For this example we consider a selection of 5 nodes in this cluster:
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Without further support from software, this (composition of) hardware behaves
as a distributed shared memory system; that is, a straightforward representation of
this hardware in our system could be:

i.e. a cluster node, with 5 SMP children nodes, with 8 general-purpose PEs as
children each.
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Now, over the course of the project the work on hardware abstraction at UvA
will strive to erase the boundary between distributed memory (disjoint address
spaces) and shared memory (shared address space). Assuming some form of run-
time software layer is developed that allows to simulate a shared memory over a
network of multi-cores, it could then become possible to group parts of a cluster
into nc-SMP nodes instead of cluster nodes, to reflect the additional programmatic
properties.

For example:

In this example, the virtual hardware description tree reflects that the shared
memory virtualization run-time has been configured to provide two shared memory
domains, one consisting of 3 nodes, and the other consisting of 2 nodes. The
specifics of this configuration is hidden behind the description tree, by describing
these domains as “nc-SMP” nodes.

Note
This example does not suggest that it might be desirable to implement
multiple virtual shared memory domains in a cluster (as opposed to, e.g.,
only one). It merely shows that our hardware description system covers
this possibility.

6.3.1.3 Intel Single-Chip Cloud

The SCC chip from Intel is an experimental on-chip many-core system which is
available for use by the project:
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It consists of 24 dual-core nodes with a high-speed interconnect. Each node
has two 32-bit x86 cores with one L2 cache per core. There are 4 memory con-
trollers. The mapping of cores to memory can be configured; for example the
physical storage can be configured to be visible from all cores, or segmented so
that each core sees its “own” memory. There is no on-chip cache coherency proto-
col implemented in hardware.

Frequency can be configured per node, i.e. per pair of cores. Voltage can be
configured per “island” of 4 nodes (8 cores).

The purpose of the research program started by Intel, which makes the SCC
chip available to institutions, is to investigate how to best program this chip. It
is intended that operating systems and run-time systems explore different ways
to expose the hardware to applications. UvA participates in this program with
a project separately funded from ADVANCE, but with the intention to overlap
research results.

Depending on the approach taken at a system level, this hardware can be de-
scribed in different ways in our virtual hardware description system. Here are a
few examples.

An intuitive approach is to implement (in software) a relaxed coherency proto-
col between caches, that will provide shared memory to applications with implicit
consistency within nodes (pairs of cores) but explicit consistency primitives. This
is analogous to virtual shared memory implementations already described in the
literature (PGAS). Without considering at first the merits/efficiency of such an ap-
proach, the result would be readily describable as follows:
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In this description, we reflect that each pair of two cores behaves as a cache-
coherent SMP system, whereas the grouping of all nodes is non-coherent and forms
a “nc-SMP” node. The system would otherwise be symmetrical with regard to
memory access.

Another intuitive approach is to acknowledge that an implicit consistency pro-
tocol over the entire chip is expensive; and thus implement a cache-coherency pro-
tocol only locally in small groups of cores. The groups would then be mapped to
different regions in memory and behave as cluster of distributed memory systems.
If such an approach is taken, the resulting system would be readily describable as
follows:
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i.e. each group of 8 cores implements a cache coherency protocol for implicit
consistency, and is thus described a SMP node. The 6 SMP nodes are then de-
scribed as part of a cluster node.

One could then combine the two approaches above and implement a relaxed
consistency model over the groups of cores. The 6 members of the cluster node
would then be “nc-SMP” nodes, each containing the 4 coherent dual-core islands
as sub-SMP nodes:

The proposed configurations so far have been relatively homogeneous and sym-
metric. In a running system however, it is likely that run-time information will
allow to tune the description to better support the heterogeneity of usage patterns;
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or possibly chip manufacturing defects will need to be represented as well. Re-
gardless, we believe that the description system is general enough that it supports
heterogeneous combinations as well, for example:

6.3.1.4 Microgrid

The Microgrid is an experimental architecture researched by the CSA group at
UvA. It consists of a composition of many “simple”, general-purpose cores with
a large amount of internal concurrency (through hardware scheduling of multiple
threads).

An example Microgrid configuration from the Apple-CORE project is described
thus:
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It consists of 128 cores. Each group of 4 cores shares a L2 cache. Memory con-
sistency is ensured below the L2 caches (thus per group of 4 cores), but consistency
must be controlled semi-explicitly between L2 caches.

Groups of cores are further grouped in “control rings” over which (parallel)
work can be automatically distributed by the hardware. In this configuration, there
are 6 such control rings, containing 2, 4, 8, 16, 32 and 64 cores respectively (there
are also 2 cores not part of a ring).

Each core can be independently addressed, as well as each ring (through any
core in the ring). The hardware threads within each core cannot be independently
addressed.

We see two ways to describe this hardware in the system proposed above. One
is to consider each control ring as an independent computing resource that can be
programmed separately. From a programming perspective the control rings can
then behave as nodes in a cluster, corresponding to this description:
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One can also disregard control rings from a programming perspective and ad-
dress each core separately. In which case, what matters most is the boundary be-
tween coherent and non-coherent shared memory access. This can then be repre-
sented as follows:
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6.4 Other properties that can be captured

The motivation for the definition of virtual hardware was driven by the need of the
ADVANCE project to isolate statistical behavior of hardware and software compo-
nents. However, the virtual hardware abstraction can be recycled to capture other
aspects of concurrency management:

• scheduling: virtual PEs can be configured to provide a specific scheduling
policy. The same underlying hardware can be virtualized multiple times
when multiple schedule queues are cooperating (e.g. one virtual PE per pri-
ority level in a multi-priority preemptive scheduler).

• process isolation: if process isolation is provided at a system level (i.e. be-
tween applications), the set of virtual PEs available to each application can
be a virtualized security domain over the physical hardware resources (with
own memory protection, etc).

These topics may or may not be explored in the context of ADVANCE, but the
abstraction of virtual hardware / selections give a handle to manage these aspects
independently from the expression of program code.
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Abstract: This note provides a technical perspective on the integra-
tion of SVP with the resource mapping technology provided by
TWENTE in ADVANCE. This is the outcome of several dis-
cussions between UvA and UTwente over the course of the first
reporting period.

7.1 Introduction

One of the contributions of TWENTE to ADVANCE is an on-line resource map-
ping engine able to map application task graphs to resources, while satisfying re-
source and extra-functional requirements. It was documented extensively in [?].

This implementation, named Kairos and currently maintained by Timon ter
Braak, was originally developped to map synchronous data flow (SDF) graphs to
embedded platforms and was extensively tested on the custom CRISP multi-core,
multi-DSP architecture also developed by UTwente. While designed for SDFs,
it can be extended for use with any task graph where nodes represent persistent
activities and edges represent communication requirements.

We give an overview of the function and structure of Kairos in the next section,
followed by a strategy to integrate Kairos with SVP in ADVANCE.
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7.2 Overview of Kairos from an integrator’s perspective

As a functional system, Kairos can be summarized by the following diagram:

It encompasses two functions:

• a mapping function, which takes as input an application description, a plat-
form description, and the state resulting from previous mappings and pro-
duces a resolved mapping of application tasks to resource nodes as output.

• a configuration and execution function, which takes as input a resolved map-
ping and performs hardware configuration, loading of programs to the target
hardware and execution of the application tasks. The actual hardware access
uses hardware-specific handlers outside of Kairos, which can be configured
through the platform description.

As a technical framework, Kairos is implemented as a software component
that is invoked by applications when they are executed. An example is given by the
following figure.
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For each application, a single fat executable contains:

• a special task containing the entry point of the application, and which is
run on the initial hardware component where the fait binary is loaded and
executed. This contains the initial calls to Kairos.

• a binary representation of the task graph, when known at compile time. This
is provided by reference to Kairos by the application’s entry point. When
not known at compile time, the Kairos client must construct a binary repre-
sentation of the task graph in memory and provide that by reference when
requesting a mapping to Kairos.

• the compiled code for all the implementations of all the tasks. Each task
can have multiple implementations when different sorts of target hardware
require different code.

In the Kairos library, a binary representation of the platform description is
maintained. This can be provided either at (Kairos’) compile time in the binary
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form of the library, or constructed in memory prior to the initialization of Kairos.
The platform description references hardware handlers for loading tasks’ code+data
to specific hardware resources; again these handlers can be either compiled with
Kairos or made available dynamically prior to the initialization of Kairos during
execution.

7.3 Proposal for an integration with SVP

In SVP there are two different ways to approach hardware.

In a first mode described in [?], SVP programs request actively during their
execution a handle to resources that are not yet visible to them. This is done by
sending an allocation request to a system service (called “SEP”) which computes
a suitable allocation based on constraints expressed in the request. The outcome of
such an allocation is a handle to the resource and does not entail immediate use of
the resource. In this mode, hardware properties are used internally in SVP’s SEP
to match a pool of available hardware to high-level requirements expressed in the
program’s request for resources, but the structure of the tasks that will be executed
on the allocated resource(s) is not visible to the SEP.

The other mode is the actual use of (previously allocated) resources. The basic
action used by programs is called delegation (described in ??), which creates a
family at a named place and defines binding between that family and the designated
resource. This forces the family to run within the boundaries of that target resource
and provides isolation via space partitioning. When a delegation action is issued
by a thread, SVP captures this event and translates it to a mapping and execution
request for the target place.

Prior to ADVANCE, SVP task graphs expressed during delegation would be
mapped across a target resource naively, with a simple round robin or even distri-
bution of threads across the target cores. This was tractable because to this point
SVP task graphs were constrained to be linear and homogeneous, and places were
also assumed to be composed of homogeneous cores. When either of these as-
sumptions are relaxed (arbitrary task graphs or heterogeneous place structures),
family mapping becomes non-trivial. We propose to use the Kairos technology for
this purpose.

In the proposed integration, Kairos is used by SVP to support the implementa-
tion of delegation. In an example use case, the SVP interactions can be described
by the following diagram:
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A parent component issues a place allocation request to a SEP with resource
constraints. The SEP performs the allocation by partitioning the platform and re-
turns a place handle for a subset of the platform’s resources.

At a later stage, the parent component issues a delegation request to SVP. This
delegation request carries the place handle allocated earlier, a task description for
the family to be created, optional extra-functional requirements, and port infor-
mation to establish communication between the parent component and the created
family.

When the SVP delegation handler receives a request, it propagates the task
description and extra-functional requirements to Kairos as a mapping request for
a new application. The handle to the resource subset returned by the SEP is also
provided, to constrain the resource space where a mapping should be computed.
If the mapping fails in Kairos, the SVP delegation request is aborted and an error
status is reported to the application. If the mapping succeeds, SVP returns a family
handle to the parent component, and asynchronously requests configuration and
execution of the application to Kairos.

At a later stage, a parent component may request synchronization on termina-
tion of the family. This is resolved by synchronizing with Kairos on termination of
the placed application.
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7.3.1 Impact on the implementations

The proposed scheme suggests the following adaptations:

• for SVP, a family description provided in a delegation requests must be trans-
lated to an explicit task graph data structure, as this is the input required for
mapping requests in Kairos.

• for Kairos, the mapping algorithm must be able to constrain the binding
process to a subset of the platform, which is partitioned by SVP’s SEP.

It is assumed that UVA and TWENTE will coordinate in ADVANCE to achieve
this integration.
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8.1 Intended cooperation between SVP and S-NET

In its current form advertised by HERTS [?], S-NET encompasses both its defini-
tion as a coordination language and its implementation as a run-time system for
S-NET programs.

As a coordination language, S-NET introduces a sharp distinction between “co-
ordination”, where high-level concurrency is exposed to the S-NET system, and
the implementation of algorithm boxes, which is outside of the semantics of S-
NET. From a user perspective, S-NET distinguishes between application engineers
and concurrency engineers and provides different interfaces to both kinds of users.
We highlight here that the language S-NET does not mandate a specific execution
model for the expressed concurrency, other than “suggesting” distribution in an
implementation through the tagged parallel replication operator.

Next to this aspect, one must consider the implementation of S-NET. The tech-
nology advertised by HERTS and proposed for ADVANCE conceptually maps the
S-NET language semantics into an abstract execution model where boxes are (se-
quential) activities communicating through buffered streams. The reification of
this model on a shared memory system can, for example, project it onto a CSP net-
work with a single sequential thread per box, and communication through shared
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memory buffers and condition variables. This was the reference implementation
made available at the start of ADVANCE.

When considered in isolation as implementations of concurrency management
systems, a S-NET runtime system and SVP runtime system are largely indepen-
dent from each other. However, when implemented in isolation, the two systems
also exhibit the following shortcomings as the applications grow in size. When S-
NET boxes with internal concurrency (e.g. data-parallelism, divide-and-conquer)
are added to a network, this is invisible to a CSP-based S-NET run-time system
and jitter increases uncontrolled due to oversubscription of resources; this problem
is exacerbated as more internal concurrency or more internally concurrent boxes
are added. When SVP concurrency trees become deep and unbalanced with work
units that operate on large independent data sets, interference can occur in a naive
SVP runtime system due to contention on resources used for communication, e.g.
memory or network links.

One goal of ADVANCE was thus to use the S-NET language and abstract
execution model and project them onto SVP, to mutually strengthen the two tech-
nologies and lessen the specific shortcomings described above. By exposing both
high-level concurrency expressed in coordination and internal box concurrency to
SVP, it is expected that the S-NET run-time system can achieve better resource
usage in presence of internal concurrency of boxes. By introducing component
boundaries and streaming semantics into SVP, it is expected that SVP can better
map concurrency onto processing resources by using the extra information about
communication requirements provided by S-NET.

The envisioned architecture between S-NET and SVP for ADVANCE can be
represented as follows:

8.2 Technical strategy for the S-NET integration in SVP

The main execution model for S-NET is to project boxes onto tasks (threads) that
communicate through buffered channels. A bounded buffer size allows for back-

91



propagation of throughput constraints in a network.
In order to express this concurrency in SVP, some mechanism must be designed

to implement streams. The existing implementation of S-NET cannot be reused as-
is, as it requires first-class condition variables and implicit communication through
shared memory, both of which are not directly supported by SVP. We propose a
technical solution in this section.

8.2.1 Overview

The existing S-NET implementation assumes the existence of condition variables
and implements streams using shared memory as follows:

• each box is implemented by a single thread;

• the thread reads from the buffer, and executes the box’s computation for
every input record it finds; the computation in turn contains (sequential) calls
to the S-NET’s snet_out primitive which is in charge of queuing produced
records to the output stream;

• when the input buffer is empty, the thread suspends on a condition variable
that is signalled by the predecessor box/network for the input stream;

• when the output buffer is full, the thread suspends on a condition variable
that is signalled by the successor box/network for the output stream.

In SVP, a thread can only suspend on reading its synchronizing data depen-
dencies or waiting for a long latency operation to terminate, such as a subordinate
family of threads. Moreover, when considering SVP programs that are mapped
onto computing resources with multiple (non-shared) memories, the locality of
stream buffers must be explicitly controlled.

Our proposed implementation addresses this by requiring a separate thread for
each input record of a S-NET box, and placing stream buffers under supervision of
an exclusive place. Synchronization between readers and writers is then achieved
through synchronization on singleton family termination.

We propose a synthetic implementation of this scheme in the following section.
In addition to enabling S-NET to run using SVP’s concurrency model, this

approach has the following extra advantages:

• since each input record is processed by a separate thread, it becomes possible
to relocate a box to a different resource dynamically by simply changing the
box’s place identifier used at each family creation;

• since all inter-box communication occurs using named exclusive places, it
becomes possible to control explicitly which resources are used for commu-
nication;
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• in particular, physical concurrency can be exploited without communicat-
ing data between places by recognising the independence of S-NET records.
Consider the following, three boxes A,B,C in a pipeline. To get physical con-
currency from a CSP implementation the output of A must be communicated
to the input of B and subsequently its output to C. With a fixed mapping of
box to place inherent to CSP (e.g. A->P, B->Q P->R) this requires commu-
nication which between P, Q, R, which may be slow and expensive. With our
scheme proposed below, A(1), B(1), C(1) can execute on P, A(2), B(2), C(2)
can execute on Q and A(3), B(3), C(3) on R, etc. Note that records, A(1),
A(2), A(3) are independent of each other and invoke no internal communi-
cation. In practice of course the network is more complex but SVP allows
for communication to be optimised away more easily through mapping at
the record level, while a CSP implementation does not;

• this scheme requires no implicit memory communication between S-NET
boxes other than communicating records. Assuming a suitable protocol to
communicate records between memory boundaries, the proposed scheme
stays valid even when the SVP resources span a distributed memory;

• the scheme is functional; that is, one can remove the concurrency constructs
from the code and obtain a sequential schedule for the entire S-NET network.

These properties, especially the last one, will be key to enable automatic gran-
ularization of S-NET by SVP in later stages of the project.

8.2.2 Proposed implementation

Note
The program code expressed below reuses the syntax and semantics from
??.

We first define buffer_t for stream buffers. This defines a SVP place iden-
tifier that must be used for all its accesses.

typedef struct record record_t;

typedef struct {
svp_place_t xpid;
size_t sz;
size_t tl, hd;
record_t* buf[];

} buffer_t;

Once this type is specified, the following primitives can be implemented to
access the buffer:
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// dequeue() attempts to read a record from the
// buffer, and returns a NULL pointer if the
// buffer is empty.
record_t* dequeue (buffer_t* b)

{
return sync spawn exclusive_at(b->xpid)

do_dequeue(b);
}

record_t* do_dequeue (buffer_t* b)
{
/* this runs with exclusive access */
if (b->tl == b->hd)

return 0;
record_t *r = b->buf[b->tl];
b->tl = (b->tl + 1) % b->sz;
return r;

}

// enqueue() attempts to write a record
// to the buffer, and returns false if
// the buffer is full.
bool enqueue (record_t* r, buffer_t* b)
{
return sync spawn exclusive_at(b->xpid)

do_enqueue(r, b);
}

bool do_enqueue (record_t* r, buffer_t* b)
{
size_t nextp = (b->hd + 1) + b->sz;
if (nextp == b->tl)

return false;
b->hd = nextp;
b->buf[nextp] = r;
return true;

}

Then we define data types for streams individual S-NET boxes:

typedef struct {
buffer_t* buffer;
// ...some definitions omitted...
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} stream_t;

typedef struct {
void (*box_code)(record_t* input, stream_t* out);
stream_t *in;
stream_t *out;
svp_place_t pid;

} box_t;

We equip the box data structure with a SVP place identifier, with the intent that
this is used to instantiate the execution of the box on each input record. We ensure
this using the following two coroutines:

// "handle_input" represents the instantiation
// of a box for a single input record. This
// should run on the resource identified by b->pid.
void handle_input (record_t *input, box_t *b)

{
b->box_code(r, b->out);
read_next(b);

}

// "read_next" attempts to read another input
// record. If one is available, it tail-recurses
// into handle_input with a new thread creation.
// Otherwise, it simply terminates the thread.
void read_next (box_t *b)
{
stream_t *in = b->in;
record_t *r = dequeue(in->buffer);
if (r == NULL)
{

// the buffer was empty.
// ... some code omitted here ...

} else {
// a record was found, process it.
// ... some code omitted here ...
spawn at(b->pid) handle_input(r, b);

}
// in all cases, let this thread terminate.

}

The two functions handle_input and read_next mutually recurse using
tail recursion as long as there are records to process in the buffer. Tail recursion
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guarantees fixed stack usage in the absence of real concurrency during execution.
When the buffer becomes empty, the chain simply terminates.

Note
The implementation of read_next above is incomplete. The full version
is given below.

From this point, we implement the writer code in S-NET’s snet_out as fol-
lows: if there is no reader yet when snet_out is invoked, then the reader thread
is created with the provided record. Otherwise if the buffer is non-full, the record
is simply queued. If the buffer is full, snet_out waits for one reader thread to
terminate and tries again.

For this snet_out needs to know what box is the designated reader for a
stream. We do this by extending stream_t as follows:

typedef struct {
buffer_t* buffer;
box_t* reader;
// ...some definitions omitted...
} stream_t;

Then we can implement snet_out as follows:

void snet_out (record_t *r, stream_t *out)
{
if (!has_active_reader(out))
{

// no reader yet, create it.
make_reader(r, out);

} else {
if (!enqueue(r, out->buffer))
{

// cannot enqueue the record
// because the buffer is full.

// wait for (at least) one
// reader to terminate...
wait_on_reader(out);
// then tail-recurse to self,
// at this point the buffer
// should be non-full.
snet_out(r, out);

}
}
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}

This implementation requires snet_out to be able to introspect whether there
is a reader currently running for the stream, and to be able to wait on termination
of this reader. For this purpose we introduce the following new data type:

typedef struct {
svp_place_t xpid;
reader_t reader;
bool active;

} reader_info_t;

This data type, equipped with a SVP exlusive place identifier to serialize its
access, provides the required information about reader threads. The field active
indicates whether a reader is currently running on the stream. The field reader
stores the synchronization element on which the writer thread can wait. We reveal
the exact definition of reader_t below.

We use this type to equip the stream data type:

typedef struct {
buffer_t* buffer;
box_t* reader;
reader_info_t *reader_info;

} stream_t;

Then we can implement has_active_reader, used by snet_out triv-
ially as follows:

// "has_active_reader" returns a boolean value
// that indicates whether there is a
// reader thread currently computing
// for this stream.
bool has_active_reader (stream_t *s)
{

return sync spawn exclusive_at(s->reader_info->xpid)
ri_active(s->reader_info);

}

bool ri_active (reader_info_t* ri)
{

return ri->active;
}
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The implementation of wait_on_reader is relatively trivial as well:

// "wait_on_reader" synchronizes on termination of the currently
// executing reader. This is a no-op if the reader
// has terminated before the synchronization point is reached.
void wait_on_reader (stream_t *s)

{
// retrieve handle to reader thread:
reader_t f = sync spawn exclusive_at(s->reader_info->xpid)

ri_get_reader(s->reader_info);

// then just wait on the reader to terminate:
sync f;

}

reader_t ri_get_reader (reader_info_t *ri)
{

return ri->reader;
}

The implementation of make_reader is less trivial. It must create the reader
thread and register its handle onto the stream. Intuitively, the two creations could
be expressed in this order, as follows:

// Create the reader thread
auto f = spawn at(out->reader->pid)

handle_input(r, out->reader)

// Then register its handle.
detach spawn exclusive_at(out->reader_info->xpid)

ri_register(out->reader_info, f);

However, we deem desirable to allow snet_out to tail recurse into handle_input
in order to bound stack usage in the absence of real concurrency. This requires the
invocation to handle_input to occur after the registration of the thread handle.
This is why we opt to use delayed communication for the reader thread instead, as
follows:

void make_reader (record_t *r, stream_t *out)
{

void async pending(out reader_t rd) a =
spawn exclusive_at(out->reader_info->xpid)

ri_register(out->reader_info)
waiting_for(in reader_t);
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produce to(a) rd = spawn at(out->reader->pid)
do_handle_input(r, out->reader)
waiting_for();

detach a;

}

void do_handle_input (record_t *r, box_t* reader) channels()
{

// This runs at the designated place
// for the box.
handle_input(r, reader);

}

void ri_register (reader_info_t *ri) channels(in reader_t rd)
{

if (ri->active)
detach ri->reader;

ri->reader = consume rd;
ri->active = true;

}

This reveals the exact type for reader_t:

typedef void async pending() reader_t;

With the writer mechanism in place, we need to revisit the reader co-routines.
Indeed, the writer side assumes that readers are created in a daisy chain, but may
not synchronize on termination of all readers; instead it waits on readers only when
the buffer is full. However, for the purpose of resource reclamation by SVP, all
singleton families that are not synchronized upon must be explicitly detached. This
becomes the responsibility of read_next as follows:

void read_next (box_t *b)
{
stream_t *in = b->in;
record_t *r = dequeue(in->buffer);
if (r == NULL)
{

release_reader(in);
} else {
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make_reader(r, b);
}
// in all cases, let this thread terminate.

}

void release_reader (stream_t *s)
{
detach spawn exclusive_at(s->reader_info->xpid)

ri_release(s->reader_info);
}

void ri_release (reader_info_t *ri)
{
detach ri->reader;
ri->reader_active = false;

}

The collection of all the implementation snippets presented above constitutes
our proposed scheme for implementing S-NET with SVP.
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Chapter 9

Glossary of SVP for ADVANCE

Key: glo6

Authors: Raphael ’kena’ Poss

Status: Draft

Date: 2010-07-06

Version: glo6.txt 4103 2010-11-08 10:32:37Z kena

Source: http://notes.svp-home.org/glo6.html

9.1 Glossary of SVP concepts

9.1.1 Base concurrency concepts

thread A sequential unit of work. All threads are part of a family.

family A group of threads (see thread) related by:

• a single creation point executed by a parent thread;

• an index space;

• a common thread function;

• a pattern of synchronizing data dependencies;

• a designated place, which can be left implicit.

All threads in a family run the same thread function on the same place, but
each in a different thread context; in particular their execution can diverge.

singleton family A family of one thread.

creation An operation run by a thread to create a family. Its parameters are:

• the index space for the created family;

• the place where the family execution will occur;
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• the thread function to be executed by each thread in the family.

The result of family creation is a family handle that can be used for synchro-
nization on termination on that family.

place Named collection of hardware resources (e.g. cores) where a SVP family
can execute.

exclusive place Special type of place where the scheduling guarantees that only
one family can run at a given point in time. This implements the “secretary”
concept of [?] and can be used to implement mutual exclusion and monitors.

delegation The special case where creation specifies the target place explicitly.

synchronizing data dependencies A SVP family and its parent thread are related
via a set of synchronizing data dependencies to, from and within the family.
These are declared explicitly at the point of creation of a family. Implicit
synchronization occurs when they are accessed (they effectively implement
dataflow channels or I-variables [?]).

synchronization on termination Action that can be performed by a thread to
bulk-synchronize on the termination of all threads in a designated family.
This operates on a family handle produced during creation of a family.

A given family can be synchronized upon by at most one thread. There is no
functional output for this action other than knowledge about the termination
of the family.

asynchronous termination An action performed by a thread to terminate a family
asynchronously.

This can be either within the family (“break”), which causes the family to
terminate without allowing further threads to execute; or by a resource man-
ager (“kill”) to re-claim the place where the family is running.

parent The thread that performed the creation of a family.

index A scalar value that identifies a thread within a family. The index is visible
to the code run by each thread. The range of index values is defined by the
parent thread during creation.

thread function A sequential program to be run by each thread in a family. This
produces no return value but may communicate using synchronizing data
dependencies.

thread context Entity in an SVP runtime system where thread execution occurs.
This captures a thread’s machine state including variables, synchronization
information and local storage.

family handle Result of the creation of a family. Can be used for synchronization
on termination.
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9.1.2 Extra terms from the Hydra implementation

consistency domain Collection of hardware resources where threads can commu-
nicate using implicit dependencies in shared memory. Such a communica-
tion is not allowed by SVP across consistency domains.

memory object A named region in memory that can be made consistent using
explicit actions across consistency domains.

For more information see ??.

9.1.3 Proposed concepts from the SL extension

function A sequential program that optionally returns a value.

spawn The special case of a creation action executed by a thread, when creation
defines a singleton family running a thread function that executes a given
function and captures its return value.

When a spawn action is used, the corresponding synchronization on termi-
nation allows the synchronizing thread to access the return value.

In the revised SL syntax proposed in ??, spawn is the preferred language
construct, and the SL compilers expands this in a variety of creation con-
structs in the target SVP implementation.

For more information see ??.
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Chapter 10

Implementation work for
ADVANCE, Nov 2010

Key: adv16

Status: Draft

Authors: Raphael ’kena’ Poss

Date: 2010-11-17

Source: http://notes.svp-home.org/adv16.html

Version: adv16.txt 4158 2010-11-17 23:42:55Z kena

10.1 Summary of efforts required

The following table summarizes the implementation work identified during this
reporting period. It also indicates to which task in WP3 they are linked, and gives
a rough estimate of the effort required.

Note that this is not exhaustive as the Description of Work implies other efforts
in each task. Only the activities identified in this report are listed below.

Description Origin Project
tasks

Effort (est.
months)

Extend the Hydra framework with places:
exclusive, named.

?? WP3d 2 month

Extend the Hydra framework to support
delegation to accelerators.

?? WP3b,
WP3c

unknown

Implement a new front-end for the SL
compiler.

??, ?? WP3c 3 months

... continued on next page
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Description Origin Project
tasks

Effort (est.
months)

Implement the annotation system for
extra-functional properties and require-
ments.

?? WP2b,
WP3a,
WP3b,
WP3c

3 month (with
HERTS)

Implement tools / languages for describ-
ing resources

??, ?? WP3a,
WP3d

1 month

Extend the SEP protocol / implementation
to use the ADVANCE resource system.

??, ?? WP3b,
WP3d

3 months

Integrate Twente’s Kairos with SVP. ?? WP3d,
WP6e

5 months (with
TWENTE)

Adapt S-NET for use with SVP. ?? WP2b,
WP2c

3 months (with
HERTS)

Implement a process model and monitor-
ing scheme.

XXX WP3a,
WP3b,
WP6c,
WP6d

unknown (with
TWENTE)

FIXME: maybe missing here: describe statistical models for program behavior
on SVP resources? Does that even make sense?

10.2 Summary of partners interactions

• With TWENTE: Integration of Kairos for on-line spacial resource mapping.
Implement resource monitoring.

• With HERTS: Implement/integrate the annotation system in SAC for extra-
functional properties and requirements. Adapt the implementation of S-NET.
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