
Heterogeneous integration to simplify many-core
architecture simulations ∗

Raphael Poss
University of Amsterdam

The Netherlands
r.c.poss@uva.nl

Mike Lankamp
University of Amsterdam

The Netherlands
m.lankamp@uva.nl

M. Irfan Uddin
University of Amsterdam

The Netherlands
mirfanud@uva.nl

Jaroslav Sýkora
Institute of Information Theory

and Automation
Czech Republic

sykora@utia.cas.cz

Leoš Kafka
Institute of Information Theory

and Automation
Czech Republic

leos.kafka@utia.cas.cz

ABSTRACT
The EU Apple-CORE project1 has explored the design and
implementation of novel general-purpose many-core chips
featuring hardware microthreading and hardware support
for concurrency management. The introduction of the lat-
ter in the cores ISA has required simultaneous investigation
into compilers and multiple layers of the software stack, in-
cluding operating systems. The main challenge in such verti-
cal approaches is the cost of implementing simultaneously a
detailed simulation of new hardware components and a com-
plete system platform suitable to run large software bench-
maks. In this paper, we describe our use case and our solu-
tions to this challenge.

Categories and Subject Descriptors
B.4.3 [Interconnections]: Interfaces; B.4.4 [Performance
Analysis and Design Aids]: Simulation; C.0 [General]:
System architectures; C.1.3 [Other Architecture Styles]:
Heterogeneous (hybrid) systems; C.1.4 [Parallel Archi-
tectures]: Distributed Architectures; D.4.7 [Organization
and Design]: Distributed systems

General Terms
System design, Vertical approach, Hardware / Software co-
design

Keywords
hardware multithreading, many-core architecture, system-
on-chip design, simulation, system evaluation

∗This work is supported by the European Union, under
grant FP7-ICT-215216.
1http://www.apple-core.info

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
RAPIDO ’12, January 23 2012, Paris, France
Copyright 2012 ACM 978-1-4503-1114-4/12/01 ...$10.00.

1. INTRODUCTION
Future architecture research towards many-core architec-

tures will answer fundamentally different problem statements.
Instead of starting with sequential programs and wondering
how to make them run faster, the starting point is concur-
rency: how architecture research should be organized when
starting with the assumption that concurrency is the norm,
both in hardware and software. In this context, the research
questions are transformed: the focus shifts away from time
to results, towards higher throughputs, higher efficiency and
predictability.

The adoption of such a different research path should pro-
vide a fertile ground for radical innovation. In particular it
provides an opportunity to explore simultaneously issues of
latency tolerance within core designs and issues of system-
level scalability, which are tightly related.

Unfortunately, until now multi-core system-on-chip (SoC)
designers have relied on existing core IPs as basic building
blocks, and have been reluctant to innovate simultaneously
with individual core designs and system-level integrations.
This causes an increasing divergence between the design of
scalable SoCs and the design of high-performance chips.

The Computer Systems Architecture group at the Univer-
sity of Amsterdam attempts to bridge this gap by designing a
general-purpose chip architecture which demonstrates both
new core designs and best practices from SoC and NoC de-
sign. In a preliminary phase, this research was carried out
via detailed simulations of individual components based on
their potential behavior on silicon, over simple artificial mi-
crobenchmarks. The initial results were encouraging [2, 5,
4], and motivated the definition of a publicly funded project,
called Apple-CORE, to carry out a more extensive realiza-
tion. The strategy was comprehensive:

• at the hardware level, design and implement a proto-
type single-core implementation of the new architec-
ture on an FPGA; and simultaneously implement a
software emulation of a full multi-core system using
the new processor design;

• at the software level, design and implement new oper-
ating systems, language tool chains, and a representa-
tive set of benchmarks to evaluate the new hardware
architecture, both on single core (FPGA prototype)
and multi-core systems (software simulation).

17

http://www.apple-core.info

Parallelizing
C compiler

(partner UOI)

SAC
compiler

(partner UH)

Core compiler
(UvA)

Assembler
(UvA)

Reference
implementation
(UvA & UTIA)

Sequential execution
via legacy tool chain on

legacy architecture

Assembly
regression

tests

Interface-
level unit &
regression

tests

Automated testing via multiple
execution over various points
in the hardware design space

Figure 1: Tool chain interactions for troubleshooting and software validation.

The main challenge of this undertaking was to establish
an infrastructure which enables simultaneously the separate
validation of hardware and software aspects of the project,
and the evaluation of the architecture parameter space. In
particular, the need for accurate simulation and the intro-
duction of new experimental core designs conflicted with the
need for fully-featured mature operating system and library
services in benchmark software.

In this paper, we show how we mastered this challenge by
introducing heterogeneous integration as a means to simplify
evaluation. Heterogeneous integration consists of mixing the
new component designs with legacy designs in the architec-
ture model, so that legacy components can support work-
loads not relevant to evaluation, such as system services. In
a simulation environment the legacy workloads can run na-
tively on off-the-shelf hardware. We first detail in section 2
our problem statements and requirements. Then we explain
in section 3 our general strategy, and we detail in section 4
our resulting evaluation platforms. We summarize the ben-
efits in section 5 and finally in section 6 we relate our work
to other efforts in the field.

2. EVALUATION REQUIREMENTS
To determine the extent of the use of system services

by existing code, we have examined the source code of our
benchmark applications, as well as commonly used bench-
marks from the literature (e.g. bzip, yacc, GCC, etc.). We
found that most benchmark applications use pre-existing
system APIs. For example, file-oriented applications like
bzip use POSIX file access directly (open, read, write, close)
to bypass the buffering offered by the C library. Bench-
marks commonly also use system APIs to manipulate file
system directory structures and gather precise monitoring
data (e.g. for self-measurement of execution time), which
are defined outside of the standard C library. Moreover, all
common C library implementations suitable for porting to a
new chip architecture, including the BSD library we eventu-
ally selected, assume the existence of a standard POSIX-like
system interface to implement the API in charge of memory
management, input-output, date & time and interactions
with the environment.

In short, a preliminary investigation shows that the avail-
ability of services from mature operating systems are a pre-
requisite to the evaluation of a new architecture via com-

Application source code

TRANSLATION

EXECUTION

Common
input
data

EXECUTIONEXECUTION

COMPARISON

Output data or
behavior

Output data or
behavior

Output data or
behavior

Program image suitable for a
legacy environment
(commodity desktop

computer)

Program image for the single-
core microthreaded

environment
(UTLEON3 on FPGA board)

Program image for the many-
core microthreaded

environment
(many-core system emulation)

Figure 2: Vertical validation process.

monly accepted benchmarks.
Furthermore, prior to evaluation the infrastructure must

be validated. If the research project involves both new com-
ponent designs and new programming methodologies, as in
our case, any baseline must be established on a separate
system. If benchmarks are to be reusable between the base-
line and the new system, the program source code must be
translatable both to the new architecture and to a legacy en-
vironment for comparison. In our setting, we established the
infrastructure described in fig. 1. Next to code generation
paths from C and SAC [11] benchmarks towards the new
chip architecture, we also established a compilation path to-
wards existing legacy architectures for comparison purposes.

From a process perspective, this requires that the same
source code and the same input data can be processed via
the various target platforms and the final output data / be-
havior compared against each other, as depicted in fig. 2.
While this general validation process may seem at first ir-
relevant to issues of system integration, it actually implies a
fundamental constraint: that the same system services are
available on the legacy reference platform as on the new ar-
chitecture implementation. Otherwise, the same application
code cannot be used for both, which would defeat the vali-
dation strategy.

Two design directions were possible to address this con-
straint: either the existing system services from the legacy
platform are ported for use by applications on the new archi-
tecture, which allows to use most existing benchmark appli-

18

cations without changes; or a different, architecture-specific
operating system is developed for the new architecture, and
its system services are then emulated on the legacy platform,
and the C library implementation is modified to use the new
system interfaces, and the existing benchmark applications
are modified to use the new interfaces as well.

The latter seemed at first exciting as it could be the start-
ing point for long-lasting partnerships with state-of-the-art
operating system research for parallel hardware, such as Bar-
relfish [18], Helios [17] or fos [23, 24]. However, there is
an immense practical obstacle to this latter strategy: not
only must we port the new operating system to our plat-
form; the corresponding application-level implementation
work, required to make the C library and application pro-
grams compatible with the new system, must be compounded
with the portability requirement that the code should also
run on commodity hardware.

Indeed, when considering the foreground technology pro-
duced by state-of-the-art operating research, we noticed that
this research is still primarily focused on developing new
system principles and much less to provide comprehensive
application compatibility layers with legacy systems. We
could thus not expect to be able to reuse their technology
as-is without a significant investment on our side, which was
not budgeted in our effort.

Instead, we considered the exploration of new operating
systems to be future work, and we opted for the former
strategy instead: port existing system services from a legacy
platform to our new environment.

3. SYSTEM DESIGN STRATEGY
As described in the introduction the research focus of the

project was a processor chip architecture providing a novel
form of hardware multithreading over many cores. Since
the first technology produced was an implementation of the
architecture (both on FPGA and system emulation in soft-
ware), a naive approach would have been to directly follow
up on this work and port an existing software operating sys-
tem to run on the new processor. However, we found two
obstacles to this, one practical and one conceptual.

The practical issue is that porting an existing operating
system to a new hardware platform constitutes a significant
undertaking. While we could not find any academic quan-
tification of the effort required, the mere existence of entire
businesses dedicated to this task2 and our own experience
suggested that the work required would also exceed our ef-
fort budget.

The more fundamental conceptual issue is that all ex-
isting reusable operating system codes we could find, from
embedded to server platforms and from monolithic kernels
to distributed systems, require support for external con-
trol flow preemption (traps and interrupts) at the pipeline
level for scheduling, and either inter-processor interrupts or
on-chip programmable packet networks for inter-processor
control and system-level communication. Meanwhile, our
core micro-architecture does not support preemption to pro-
mote massive hardware scheduled multithreading instead,
and does not support inter-process interrupts to favor the
use of a custom on-chip network supporting active mes-
sages [21] instead. Because of this mismatch, any effort

2For example Technologic Systems, AZ, USA, http://www.
embeddedarm.com/services/embedded-os-porting.php.

MEMORY

MEMORY I/O

ACTIVE
MESSAGES

DECODE & REGADDR

IRF

ALU

LSU

FETCH & SWITCH

L1D & MCU

FRF

ALU
(async)

GPIO

L1I

WB

TMU &
SCHEDULER

READ & ISSUE

FPU
(async)

TT & FT NCU

Figure 3: Core micro-architecture.

to port an existing operating system would have required
to either introduce new features into the micro-architecture,
with the risk that these would impact performance nega-
tively and add complexity to the machine interface, or re-
design the operating system components, which would add
another significant research expenditure.

Instead, we took a transversal approach: add one or more
processors implementing a legacy architecture to the overall
system design, and use them to run one or more instances
of an existing operating system in software. This is what we
call heterogeneous integration. Once this is done, it becomes
possible to delegate any uses of system services from applica-
tion code running on the new architecture, through the NoC,
to the legacy processor. With this approach, the porting ef-
fort becomes minimal, since the only new implementation
required is a set of “wrapper” API on the microthreaded
processors that serve as proxy for a syscall interface imple-
mented on the remote legacy core.

Although we developed this approach independently, we
later recognized it in the “multikernel” approach proposed
by the designers of Barrelfish [1].

4. REALIZATION
We have realized three different integrations of the pro-

posed new core design, to study its behavior at different lev-
els of abstractions. The FPGA implementation, described
in section 4.2, focused on area costs and gate-level interac-
tions inside cores, and thus features only one multithreaded
core. The component-level software simulation framework
described in section 4.3 was developed to study component-
level interactions within and across many cores on chip. The
high level software simulation framework described in sec-
tion 4.4 was realized to make quick and reasonably accurate
design decisions at the system level. All three are based on
the same single core design, outlined briefly in section 4.1.

4.1 Microthreaded cores
The proposed new core design introduces massive hard-

ware multithreading, dataflow scheduling and hardware sup-

19

http://www.embeddedarm.com/services/embedded-os-porting.php
http://www.embeddedarm.com/services/embedded-os-porting.php

F P G A C I R C U I T B O A R D

F P G A C H I P

Microthreaded
processor

(UTLEON3)

DRAM
interface

SVGA
interface

UART
interface

DRAM chips DAC + CRT
output interface

UART
controller

AMBA AHB bus

CRT RS 232

LCD buffer

On-board LCD

ROMLegacy RISC
processor
(LEON3)

Figure 4: Components on the FPGA platform.

port for concurrency management as means to tolerate on-
chip latencies and optimize throughputs with minimal area
requirements. A block diagram is given in fig. 3. A 6-
stage, single-issue, in-order multithreaded RISC pipeline im-
plementing either the SPARC or DEC / Alpha ISA, either
32-bit or 64-bit word sizes and shared FPUs is extended
with a dataflow scheduler and a dedicated thread manage-
ment unit. Dataflow scheduling means that all registers
are equipped with state bits which cause an instruction to
suspend if its operands are not yet computed. Compiler-
provided control bits allow to switch preemptively to another
thread at the fetch stage for every instruction that may sus-
pend, reducing pipeline bubbles. The fetch unit obtains PCs
from a thread active queue in hardware. Register addresses
are translated at the decode stage to index different areas
of the register files in every thread, possibly overlapping for
thread-to-thread communication. Long-latency results like
multiplies, floating-point or memory load completions are
written asynchronously to the register file and “wake up”
waiting threads by placing them back on the active queue.
The hardware Thread Management Unit operates on ded-
icated structures (Family and Thread Tables), and can be
controlled remotely via active messages on the NoC. New in-
structions are introduced in the ISA to create, communicate
with and wait on threads.

4.2 FPGA platform
In fig. 4, we illustrate our FPGA-based platform. Using

the modular GRLIB [10] component library, we assembled
the new processor design UTLEON3 [7, 19], based on the
design from section 4.1, together with the original unmod-
ified LEON3 design [9] around an AMBA [8] bus instance,
together with a DRAM controller, a system ROM, and var-
ious I/O devices (UART, SVGA adapter, on-board LCD).

In this design, heterogeneous integration allowed us to
use the unmodified LEON3 to run the existing operating
system µCLinux [16], a port of Linux for systems without a
MMU. Meanwhile, the UTLEON3 processor could run mi-
crothreaded code generated with our tool chain. Commu-
nication between the two processors occurs via the shared
bus: code running on the UTLEON3 can place a request
to the system service in memory, then notify the other pro-
cessor by programming an AMBA interrupt, then wait for
the result using a busy loop (the UTLEON3 cannot receive

10 9 6 5

11 8 7 4

12 13 2 3

15 14 1 0

26 25 22 21

27 24 23 20

28 29 18 19

31 30 17 16

L2 L2

L2L2

DIRECTORY

L2 L2

L2L2

R R R R

R R R R R

R

RRRRR

Figure 5: 32-core tile from the Apple-CORE many-
core chip design.

CACHE
DIRECTORIES

DDR Channel Controller

DDR Channel Controller

Figure 6: Example many-core chip of 128 mi-
crothreaded processors.
Small white tiles represent individual cores. Each dark gray
tile represents a L2 cache. Two cores share a FPU.

interrupts).
This is the platform that was eventually used to demon-

strate the feasibility of a 32-bit configuration of the new ar-
chitecture and perform single-processor experiments. How-
ever, we highlight that this platform was only intended as a
proof-of-concept: the shared bus would become a bottleneck
if the number of processors was increased keeping the same
overall system design, and the busy waiting required by the
lack of an asynchronous completion notification mechanism
for system services is power-inefficient.

4.3 Many-core system simulation
Our component-level software simulation framework is close

in intent and implementation to the M5 simulator [3] from
the University of Michigan, to which it is contemporary. Our
work differs from M5 in focus: our framework is dedicated
to optimizing cycle-accurate simulation of hundreds of cores
featuring novel component designs and the accompanying
on-chip networks, whereas M5 focuses more on compatibil-
ity with legacy systems.

Like M5 however, we strived for maximal configurability.

20

E M U L A T E D
P L A T F O R M

Many-core
microthreaded

chip

DRAM

DDR3
channel(s)

MMIO bridge
Legacy

processor
(emulated)

System
bus

Virtual I/O
devices

(a) Legacy processor emulated within the en-
vironment.

E M U L A T E D
P L A T F O R M

Many-core
microthreaded

chip

DRAM

DDR3
channel(s)

MMIO bridge Syscall
emulation

System
bus

Legacy
OS

(b) Bridge interface between
host and guest systems.

Figure 8: Shared RAM and memory-mapped I/O interface.

E M U L A T E D
P L A T F O R M

Many-core
microthreaded

chip

DRAM

DDR3
channel(s)

Legacy
processor
(emulated)

Virtual I/O
devices

System
network

(a) Legacy processor emulated within the environ-
ment.

E M U L A T E D
P L A T F O R M

Many-core
microthreaded

chip

DRAM

DDR3
channel(s)

syscall
bridge

syscall
emulation

Legacy
OS

System
network

(b) Bridge interface between host and guest sys-
tems.

Figure 9: Separate RAM and system bus interfaces.

E M U L A T E D
P L A T F O R M

Many-core
microthreaded

chip

DRAM

DDR3
channel(s)

Startup DMA
 (load program

image)

Final DMA
(dump memory

state)

Debugging
output

Figure 7: Initial software emulation platform.

Our key parameters include the number and sizes of caches,
the cache line sizes, the types of processors, the caching
strategies, the system topology, individual component pa-
rameters within cores, buffer sizes for hardware FIFOs, the
individual frequencies of all components, and the cache co-
herency protocols. We are able to estimate chip area re-
quirement for memory structures by deriving automatically
CACTI [25] parameters from the simulator configuration.

An example simulated 32-core tile is provided in fig. 5.
Our typical configurations included arrangements of 64 to

1024 cores following this pattern (e.g. fig. 6). The key fea-
tures of our simulated chip architecture illustrated here are
core clusters sharing a common L2 cache; a fast linear net-
work to distribute homogeneous work between adjacent pro-
cessors, organized in a space-filling curve to maximize local-
ity at multiple scales; a ring-based cache network implement-
ing a COMA protocol [26] with dedicated DDR3 controllers;
a low-bandwidth chip-wide mesh network for heterogeneous
work distribution.

When we started to consider system integration issues,
the overall emulated system design was limited to processor
and memory emulation, as in most contemporary architec-
ture research projects. No particular attention was given to
the integration of the chip into a system: only virtual RAM
banks with a simple address translation MMU were emu-
lated outside of the microthreaded chip (connected to the
on-chip DDR channel controllers), with a process to load
initial data from file to RAM upon startup and dump the
RAM contents upon termination (fig. 7).

To support system-level benchmarks as described in sec-
tion 3, we had to connect the many-core emulation to a
legacy operating system somehow. To achieve this we faced
two orthogonal design choices, with four possible platform
designs:

• system completeness: whether to implement a legacy
processor fully within the emulated platform (figs. 8a

21

E M U L A T E D
P L A T F O R M

Many-core
microthreaded

chip

DRAM

DDR3
channel(s)

Debugging
output

ROM

UART
controller

RPC
controller

Graphical
framebuffer

Pseudo
terminal (pty)

Syscall
emulation

Graphical output (SDL)

LCD
controller

Standard
output

High-speed system network

SMC
(System mgt

chip)

Figure 10: Final software emulation platform.

and 9a), or whether to interface the system services of
the host platform, where the emulator is running, with
the guest platform, where the emulated programs are
running (figs. 8b and 9b);

• topology : whether the interface between the micro-
threaded processors and the legacy systems hang off
the same memory interface (figs. 8a and 8b) or whether
to implement a separate dedicated high-speed system
network (figs. 9a and 9b).

Our first choice was to select a dedicated system bus for
I/O and system services, instead of a memory-mapped in-
terface bridge shared with the DRAM banks. We motivate
this choice with two general and two technical arguments.

Our general arguments stem from the observation that
the external memory interface is a highly contended re-
source during computations. To enable higher throughput
in streaming applications, it is thus desirable to separate the
bandwidth of external input/output from the internal band-
width of computational data structure accesses using sepa-
rate physical links. Also, the addition of an interface com-
ponent between the chip boundary and the DRAM banks
would necessarily introduce extra latencies. We consider
these arguments appropriately corroborated by contempo-
rary industry trends; for example Intel provides separate
DDR channels and a dedicated Quick Path Interconnect in-
terface at the chip boundary in its Core i7 architecture [14].

Our technical arguments are specific to the many-core chip
design implemented in the emulation platform. First the
provided on-chip COMA protocol does not provide control
to processors over the caching strategy, which would prevent
cache bypassing, a feature necessary for memory-mapped
I/O. Also, the platform also interleaves the address space
over the multiple DDR controllers with the granularity of a
cache line, which prevents the mapping of a contiguous range
of addresses to an external interface. Since this interleaving
is not advertised, it would make the development of our
wrapper API impractical.

Our next choice was to implement a virtual bridge in-
terface for system services and redirect any request from
within the guest platform to the native operating system
of the host platform, instead of emulating an entire legacy

platform within the emulation environment. This choice was
motivated by two practical considerations. First, we could
not find off-the-shelf processor emulators suitable for direct
inclusion in the emulation platform; without the ability to
reuse existing software, we would have had to expend a sig-
nificant implementation effort. We also considered that the
evaluation activities of the Apple-CORE project were pri-
marily focused on processor and memory performance, and
thus that the accuracy of I/O performance measurements
was not required and did not justify the extra effort.

Our resulting emulation environment, corresponding to
the general design in fig. 9b, is illustrated in fig. 10. We im-
plemented a dedicated packet switched system network with
a protocol similar to PCI Express and HyperTransport [13],
and a bridge interface for system services, labeled“RPC con-
troller” in the diagram. For symmetry with the FPGA plat-
form, we also implemented a ROM chip, a UART interface,
a virtual LCD device, a graphical framebuffer and an RTC
(not pictured). We implemented the interface between the
system network and the processors on the chip using con-
cepts inspired from related work in our research group [12].
Finally, an additional SMC component is in charge of initial-
izing the system upon startup of the emulator, by copying
the ROM contents to the chip’s memory system via DCA
and then triggering activation of the first hardware threads.

The heterogeneous integration here consists of the simul-
taneous use of the simulation environment to emulate the
new core design, and the host system of the simulator to
run system services.

4.4 High-level simulation
Next to the low-level platforms described above we have

also implemented a high-level simulator to observe the be-
havior of benchmarks which can consist of billion of instruc-
tions executions. This also allows us to investigate mapping
strategies of large workloads to different core clusters while
developing operating system components.

This environment is illustrated in fig. 11. The architecture
model simulates the chip design, whereas the application
model executes the workload of simulated cores as native
software threads on the host architecture with no detailed
simulation of pipeline, instruction issue mechanism or load
and store queues.

The mapping function is implemented as automated in-
strumentation of the native code that generates events rel-
evant to the architecture model. Compared to the cycle-
accurate simulator where threads can interleave at every cy-
cle showing a fine-grained interleaving of threads, the high-
level simulator evaluates threads based on some time step
showing a discrete event simulation of the workload of threads.
The time step is computed to have the longest possible step
in the execution time between synchronizing events over all
executing threads and is explained in [20].

On this platform, system services from the host system
are exploited directly. Dedicated software emulators imple-
ment the hardware features not present on the host system,
such as LCD displays or a system management unit. The
heterogeneous integration consists in bypassing the machine
model for API calls to library and system services.

5. EVALUATION
During the Apple-CORE project, the new architecture

was evaluated across a range of benchmarks, including cryp-

22

Figure 11: High-level simulation of the mi-
crothreaded architecture.

tographic functions, signal processing kernels and interac-
tive applications. The full evaluation results are available
publicly3 and are outside of the scope of this paper. We
summarize the performance of our simulators in table 1.

Thanks to our heterogeneous integration strategy, we were
able to compile and run legacy code predating the Apple-
CORE architecture without changes, and without the bur-
den to integrate entire existing software stacks onto our tar-
get new architecture design. Our strategy also allowed us to
reduce the efforts dedicated to system integration and soft-
ware compatibility to 6 man-months, out of a budgeted 350
man-months project.

6. RELATED WORK
Truly our contribution is not as much an improvement

to simulation technology, as it is an application of known
strategies in system architecture to the field of simulation.
The key here is to recognize that we propose to take advan-
tage of a opportunity for spatial heterogeneity in the tar-
get (simulated) architecture, to partially simulate the target
system. This is possible because heterogeneous concurrent
applications running on a many-core system, or a SoC, have
loosely coupled sub-systems which can be simulated in iso-
lation. Our strategy is to simulate one sub-system (compute

3http://www.apple-core.info/deliverables/

Simulator ISA Speed

FPGA SPARC 20MIPS, 1 core
Component-level,
software

SPARC,
Alpha

1-10MIPS shared by
all simulated cores

Higher-level,
software

any 100MIPS-1GIPS,
scalable to multiple
host cores

Table 1: Simulator performance

workloads running on the proposed new core design) while
letting the function of the rest of the system run on “real”
hardware, outside of (and invisible to) the simulation.

This strategy comes in contrast to efforts that achieve
completeness in the simulated system. We acknowledge the
increasing interest to simulate entire, large, heterogeneous
systems efficiently. RAMP [22] is a recent example of this:
the task to implement simulators for individual parts is dis-
tributed across multiple organizations, and the resulting in-
dividual simulators are run in parallel and cross-synchronized
to obtain a single complete simulated system.

We denounce completeness as an inadequate requirement
on simulators to demonstrate new component designs. Take
as example the Cray XMT [15], which inspired us. In the
XMT, the focus of attention of the system designer is the
compute node with its MTA processor. This runs a light-
weight, non-standard microkernel to support local applica-
tion execution. Any work not directly relevant to the per-
formance workload, like console interactions with users, is
delegated to a service node running Linux on and AMD
Opteron. While it is theoretically possible to port a large
operating system like Linux to the MTA, or extend the MTA
to run a legacy system, this would divert design efforts away
from the overall optimization of the MTA to performance
workloads. Arguably, a simulation of the Cray XMT would
not need to include a simulation of the service nodes to be
tremendously useful to the system designers.

More generally, our claim is that research projects would
be simplified by using heterogeneous integration and reusing
existing hardware to avoid the burden of porting entire soft-
ware ecosystems to new component designs. To our knowl-
edge, no related work has yet exploited this opportunity as
a deliberate strategy choice.

Finally, note that our proposed strategy is mostly orthog-
onal to simulation efficiency and accuracy. In particular,
“heterogeneous integration” is not related to heterogeneous
simulation, where the type of simulation used for a compo-
nent depends on how much information is desired. An ex-
ample of the latter is FAST [6], which uses functional models
for the overall system behavior, but replays behaviors to be
scrutinized onto a detailed timing model on FPGA. This can
be used in combination with heterogeneous integration, and
we are considering this approach for future work.

7. CONCLUSION
In this paper, we have explained our methodology to re-

solve the apparent conflict between the architect’s require-
ment of accurate simulations of new component designs and
the software engineer’s requirements for system complete-
ness. This relies on the exploitation of “companion” legacy
cores support system services which cannot be directly im-
plemented on the new hardware components.

23

http://www.apple-core.info/deliverables/

While traditional SoC designers acknowledge heterogene-
ity as an unavoidable externality, we have deliberately in-
troduced heterogeneity as a means to externalize the imple-
mentation of legacy system services from the architecture
research. This has enabled us to explore radically new prin-
ciples of processor design while reducing the cost of support-
ing complex benchmarks from existing evaluation suites.

8. REFERENCES
[1] A. Baumann, P. Barham, P.-E. Dagand, T. Harris,

R. Isaacs, S. Peter, T. Roscoe, A. Schüpbach, and
A. Singhania. The multikernel: a new os architecture
for scalable multicore systems. In Proc. ACM SIGOPS
22nd symposium on Operating systems principles,
SOSP’09, pages 29–44, New York, NY, USA, 2009.
ACM.

[2] I. Bell, N. Hasasneh, and C. Jesshope. Supporting
microthread scheduling and synchronisation in CMPs.
International Journal of Parallel Programming,
34:343–381, 2006.

[3] N. L. Binkert, R. G. Dreslinski, L. R. Hsu, K. T. Lim,
A. G. Saidi, and S. K. Reinhardt. The M5 simulator:
Modeling networked systems. IEEE Micro, 26:52–60,
2006.

[4] K. Bousias, L. Guang, C. Jesshope, and M. Lankamp.
Implementation and evaluation of a microthread
architecture. Journal of Systems Architecture,
55(3):149–161, 2008.

[5] K. Bousias, N. Hasasneh, and C. Jesshope. Instruction
level parallelism through microthreading – a scalable
approach to chip multiprocessors. The Computer
Journal, 49(2):211–233, March 2006.

[6] D. Chiou, D. Sunwoo, J. Kim, N. A. Patil,
W. Reinhart, D. E. Johnson, J. Keefe, and
H. Angepat. FPGA-accelerated simulation
technologies (FAST): Fast, full-system, cycle-accurate
simulators. In Proc 40th Annual IEEE/ACM
International Symposium on Microarchitecture,
MICRO 40, pages 249–261, Washington, DC, USA,
2007. IEEE Computer Society.

[7] M. Danek, L. Kafka, L. Kohout, and J. Sykora.
Instruction set extensions for multi-threading in
LEON3. In Z. K. et al., editor, Proc. 13th IEEE
Symposium on Design and Diagnostics of Electronic
Circuits and Systems (DDECS’2010), pages 237–242.
IEEE, 2010.

[8] D. Flynn. AMBA: enabling reusable on-chip designs.
IEEE Micro, 17(4):20–27, jul/aug 1997.

[9] J. Gaisler. A portable and fault-tolerant
microprocessor based on the SPARC v8 architecture.
In Proc. International Conference on Dependable
Systems and Networks (DSN’02), pages 409–415.
IEEE, 2002.

[10] J. Gaisler, E. Catovic, and S. Habinc. GRLIB IP
Library User’s Manual. Gaisler Research, 2007.

[11] C. Grelck and S.-B. Scholz. SAC: a functional array
language for efficient multi-threaded execution.
International Journal of Parallel Programming,
34(4):383–427, Aug 2006.

[12] M. A. Hicks, M. W. van Tol, and C. R. Jesshope.
Towards Scalable I/O on a Many-core Architecture. In
International Conference on Embedded Computer

Systems: Architectures, MOdeling and Simulation
(SAMOS), pages 341–348. IEEE, July 2010.

[13] HyperTransport Consortium. The future of
high-performance computing: Direct low-latency
peripheral-to-CPU connection, September 2005.

[14] Intel Corporation. Intel R© CoreTM i7-900 desktop
processor extreme edition series and Intel R© CoreTM

i7-900 desktop processor series Datasheet, Volume 1,
document # 320834-00, February 2010.

[15] P. Konecny. Introducing the Cray XMT. In Proc. Cray
User Group meeting (CUG’07), 411 First Avenue
South, Seattle, WA 9810, USA, May 2007. Cray Inc.

[16] D. McCullough. uClinux for Linux programmers.
Linux Journal, (123):34–36,38, July 2004.

[17] E. B. Nightingale, O. Hodson, R. McIlroy,
C. Hawblitzel, and G. Hunt. Helios: heterogeneous
multiprocessing with satellite kernels. In Proc. ACM
SIGOPS 22nd symposium on Operating systems
principles, SOSP ’09, pages 221–234, New York, NY,
USA, 2009. ACM.

[18] A. Schüpbach, S. Peter, A. Baumann, T. Roscoe,
P. Barham, T. Harris, and R. Isaacs. Embracing
diversity in the barrelfish manycore operating system.
In Proceedings of the Workshop on Managed
Many-Core Systems. ACM, June 2008.

[19] J. Sykora, L. Kafka, M. Danek, and L. Kohout.
Analysis of execution efficiency in the microthreaded
processor UTLEON3. volume 6566 of Lecture Notes in
Computer Science, pages 110–121. Springer, 2011.

[20] M. I. Uddin, M. W. van Tol, and C. R. Jesshope. High
level simulation of SVP many-core systems. Parallel
Processing Letters, 21(4):413–438, December 2011.

[21] T. von Eicken, D. E. Culler, S. C. Goldstein, and
K. E. Schauser. Active messages: a mechanism for
integrated communication and computation. In ISCA
’92: Proc. 19th annual International Symposium on
Computer Architecture, pages 256–266, New York,
NY, USA, 1992. ACM.

[22] J. Wawrzynek, D. Patterson, M. Oskin, S.-L. Lu,
C. Kozyrakis, J. Hoe, D. Chiou, and K. Asanovic.
RAMP: Research accelerator for multiple processors.
IEEE Micro, 27(2):46–57, March-April 2007.

[23] D. Wentzlaff and A. Agarwal. Factored operating
systems (fos): the case for a scalable operating system
for multicores. SIGOPS Oper. Syst. Rev., 43:76–85,
April 2009.

[24] D. Wentzlaff, C. Gruenwald, N. Beckmann,
K. Modzelewski, A. Belay, L. Youseff, J. Miller, and
A. Agarwal. A unified operating system for clouds and
manycore: fos. Technical Report
MIT-CSAIL-TR-2009-059, Computer Science and
Artificial Intelligence Lab, MIT, November 2009.

[25] S. Wilton and N. Jouppi. Cacti: an enhanced cache
access and cycle time model. Solid-State Circuits,
IEEE Journal of, 31(5):677–688, may 1996.

[26] L. Zhang and C. R. Jesshope. On-Chip COMA
Cache-Coherence Protocol for Microgrids of
Microthreaded Cores. In Bouge and et al., editors,
Euro-Par Workshops, volume 4854 of LNCS, pages
38–48. Springer, 2007.

24

