
Task Migration for S-Net/LPEL

Stefan Kok, Merijn Verstraaten, Raphael Poss, Clemens Grelck
Informatics Institute, University of Amsterdam, Netherlands

s.kok@student.uva.nl, m.e.verstraaten@uva.nl, r.poss@uva.nl, c.grelck@uva.nl

Abstract
We propose an extension to S-NET’s light-weight parallel execu-
tion layer (LPEL): dynamic migration of tasks between cores for
improved load balancing and higher throughput of S-NET stream-
ing networks. We sketch out the necessary implementation steps
and empirically analyse the impact of task migration on a variety
of S-NET applications.

1. Introduction
S-NET is a dataflow coordination language and component tech-
nology [4, 6]. As a pure coordination language S-NET provides (al-
most) no means to describe computations of any kind, but it turns
regular functions/procedures implemented in a conventional pro-
gramming language into asynchronously executing, state-less com-
ponents, named boxes. In principle, any conventional programming
language can be used, but for the time being we provide interface
implementations for the functional array language SAC [5] and for
a subset of ANSI C.

Out

A

B

C

C

DIn

Figure 1. S-NET streaming network of asynchronous components

S-NET components are connected by and solely communicate
via uni-directional typed streams. Fig. 1 shows an intuitive example
of an S-NET streaming network. Data objects enter the streaming
network via a dedicated input component and then travel alongside
the streams to compute components. Whenever a data object arrives
at box, it triggers a computation as specified by the corresponding
box language function (or procedure). During this computation a
number of data items may be sent to the output stream to trigger
further computations in subsequent boxes. Eventually, data objects
reach the dedicated output box, which writes them to file or some
other output medium.

S-NET streaming networks are not static, but evolve over time.
In Fig. 1 this can be seen best with the box named C. This box is
replicated in parallel meaning that data objects are routed to some
instance of C as indicated by a named index in the data object itself.

Copyright is held by the author/owner(s).
FD-COMA 2013 2nd HiPEAC Workshop on Feedback-Directed Compiler Opti-
mization for Multi-Core Architectures, Berlin, Germany, January 21-23, 2013
ACM SIGPLAN conference style.

Hence, instances of C (which could also recursively be complete S-
NET networks again) are instantiated as needed. The other dynamic
network aspect is serial replication. In Fig. 1 this is indicated as
a feedback loop around the parallel replication of box C, but in
fact there is no feedback in S-NET, only feed forward (among
others to rule out deadlock by construction). Effectively, the entire
network within the “feedback loop” is dynamically replicated and
the replicas are connected by streams one after the other. Data
objects entering a serial replication network are routed through an
a-priori unknown number of replicas. Before and in between any
two such replicas a certain program-dependent condition is checked
and the data either routed to the next instance of the replication or
to the subsequent network (i.e. box D in the example of Fig. 1).

Serial and parallel replication can arbitrarily be nested, con-
tributing much to the expressive power of S-NET. Consequently,
the number of box instances in a running S-NET streaming net-
work quickly grows and demands a smart mapping to compute re-
sources, e.g. the various cores of contemporary server system or
cluster node. While the deployment and operational execution of
streaming networks is handled by the S-NET runtime system [3],
the mapping of boxes to cores as well as the stream communication
with suspension and activation of boxes is handled by the underly-
ing Light-Weight Parallel Execution Layer (LPEL) [10].

Whenever the S-NET runtime system (due to replication) in-
stantiates a new component, the LPEL layer maps it to some core
for execution according to some heuristics. Once mapped a compo-
nent remains tied to that core for the duration of program execution.
This may lead to load imbalances where some cores have a pile of
data objects to be processed while others remain idle. The highly
dynamic nature of S-NET and the coordination approach that de-
liberately limits information exchange between compute and coor-
dination layer (Boxes are effectively black boxes) very much limit
any form of static analysis and scheduling.

Hence, in the work presented in this paper we extend the LPEL
threading layer by means for dynamic task migration. Firstly, we
redefine the interface between LPEL and the S-NET runtime sys-
tem box language interface to temporarily yield control to LPEL
between any two data objects to be processed by some box. This
gives LPEL a handle to change the mapping of components on this
occasion. Secondly, we define an asynchronous scheduler task (a
migration controller) that continuously observes the load balanc-
ing status of a running streaming network. According to selectable
heuristics the migration controller may choose to asynchronously
update the mapping of components to cores. The LPEL layer in
turn implements the re-mapping, which becomes effective with the
next data object to be processed.

The remainder of the paper is organized as follows. In Section 2
we provide additional background information on S-NET, its run-
time system and the LPEL threading layer. Section 3 describes our
technical contribution on task migration in greater detail, followed
by an experimental analysis in Section 4. In Section 5 we draw
conclusions and outline directions of future work.

2. S-NET: Design and Implementation
2.1 S-Net language
The basic building blocks of S-NET streaming networks are boxes.
Each box is connected to the rest of the network by two typed
streams: one for input and one for output. Following the data flow
principle, a box is triggered by receiving a record on its input
stream, upon which the box applies its box function to the incoming
data object. As pointed out before, this box function is implemented
in a box language selected for suitability in the relevant application
domain. During execution the box may send records to its output
stream. As soon as execution of the box function has finished, the
box is ready to receive and process the next item on the input
stream.

It is a distinguishing feature of S-NET that it neither introduces
streams as explicit objects nor defines network connectivity by ex-
plicit wiring. Instead, S-NET uses algebraic formulae for describ-
ing streaming networks in a much more abstract way. The restric-
tion of the boxes to single input streams and single output streams
(named the SISO principle) is essential for this. S-NET provides
four network combinators: static serial and parallel composition of
two networks and dynamic serial and parallel replication of a sin-
gle network. These combinators preserve the SISO property: any
network, regardless of its complexity, again is an SISO entity.

Let A and B denote two S-NET networks or boxes. Serial com-
position (A..B) constructs a new network where the output stream
of A becomes the input stream of B, and the input stream of A and
the output stream of B become the input and output streams of the
combined network, respectively. Parallel composition (A|B) con-
structs a network where incoming records are either routed to A
or to B; their output streams are merged to form the compound
output stream. The type system controls the flow of records. Se-
rial replication A*type constructs an infinite chain of replicas of
box or network A connected by serial combinators. The chain is
tapped before every replica to extract records that match the type
specified as the second operand. Last not least, parallel replication
A!<tag > also replicates box or network A, but this time the replicas
are connected in parallel. All incoming records must carry a prop-
erty <tag> whose integer value determines the replica to which the
record is routed. These four orthogonal network construction prin-
ciples are sufficient to define complex streaming networks.

For more detailed information on the S-NET language we refer
the interested reader to [4, 7]

2.2 S-Net runtime system
The S-NET runtime system [3] is responsible for deployment and
operation of streaming networks. Thanks to the serial and parallel
replication combinators networks evolve dynamically, and thus de-
ployment and operation are not two distinct phases, but rather alter-
nating, i.e. the operation of some network component may trigger
another replication and, thus, the further deployment of network
structures.

Furthermore, the S-NET runtime system turns implicit split in
merge points in the construction of networks into active internal
components that explicitly split an incoming stream into two (or
more) outgoing streams by implementing the routing protocol or
that merge two (or more) incoming streams into a single outgoing
streams. As internal routing components these splitters and mergers
do not comply to the SISO principle, but effectively implement
the various routing protocols derived from the S-NET network
combinators. Fig. 2 illustrates a partially deployed state of the
example network introduced in Fig. 1. For illustration reasons,
splitters and mergers are represented as (anonymous) triangles, but
in fact each split and merge component does have a proper identity.

Each component, both internal split and merge components
as well as user-level boxes, runs a simple event loop. First, a
component checks the input stream for data. If the input stream
is empty the component suspends. Otherwise, the first data item
on the input stream is consumed and processed. If this processing
requires sending a data item to an output stream, the component
may suspend on a full output stream. If a component completes
processing one item, it continues from scratch. Taking a data item
out of a stream automatically wakes up components suspended
on sending data to this stream. Likewise, adding a data item to
some stream wakes up components suspended on reading from this
stream.

2.3 LPEL threading layer
The S-NET runtime system relies on basic threading mechanisms
such as task creation, suspension, wake-up and termination. Such
mechanisms are essentially provided by any multithreading library,
including PThreads to name a specific one. However, even fairly
simple S-NET streaming networks with nested replication com-
binators induce a large number of components to be instantiated
at runtime. This motivates a two-layered approach where a small
number of kernel threads essentially abstract the compute resources
(cores) to be used while the tasks demanded by the S-NET runtime
system are implemented by light-weight user-level thread contexts
that are cooperatively scheduled among the kernel threads.

The Light-Weight Parallel Execution Layer (LPEL) [10] is
such a two-level threading implementation tailored to the needs
of the S-NET runtime system. On initialization LPEL creates a
user-specified number of worker threads. These workers are kernel
threads and, thus, preemptively scheduled by the operating system
to the available cores. The general assumption is that the number
of workers does not exceed the number of cores, and workers are
bound to individual cores to effectively deactivate the operating
system scheduler.

The instantiation of some S-NET component during a deploy-
ment phase incurs the creation of an LPEL task, or light-weight
thread. This task is assigned to some worker based on some heuris-
tic. Important for the subject of this paper: tasks are never re-
assigned (or migrated) from worker to another once created. Each
worker has a priority queue of ready tasks and a queue of suspended
tasks that wait for data on an empty stream or for space on a full
stream. Reading from and writing to streams accordingly moves
tasks between these queues not dissimilar to standard operating sys-
tem procedures.

3. Task Migration
In this section we will discuss the task migration framework devel-
oped for S-NET and LPEL.

3.1 Challenges
Conceptually, S-NET boxes are nothing but (pure) functions that
are called on some incoming data item. As a result, migrating tasks
between workers should be as simple as sending the input data to a
different worker and having the next function invocation performed
by that worker. However, as already pointed out in Section 2.2 the
S-NET runtime system implements boxes as long-lived tasks with
an internal event loop triggered by receiving data on th input stream
and by sending data to the output stream.

Migration of such long-lived tasks would involve halting the
task, migrating the task’s current state (including state of the com-
putation, such as the stack) and then unpausing the task. This would
be doable in a shared memory system, but with an eye on DIS-
TRIBUTED S-NET [2] and NUMA architectures, we want to make
the migration of state as explicit as possible to simplify carrying
over our current work to these settings in the future.

In OutD

C

C

C

C

A

B

Figure 2. Runtime representation of the S-NET streaming network of Fig. 1

Another migration challenge is that any overhead introduced
by a migration mechanism and its associated heuristics should be
less than the performance gained by performing the migration,
otherwise there is nothing to be gained from migrating tasks.

3.2 Respawning
As a first step towards task migration we modified the S-NET
runtime system to expose more fine-grained concurrency: each task
becomes a one-shot activation of an entity that handles a single
input record. The simple implementation of this idea is to have
every S-NET task spawn a new copy of itself upon termination.
However, this would introduce a significant amount of overhead
for the common case where a task does not migrate. This is due
to LPEL having to do some expensive allocation upon LPEL thread
creation (such as the task’s stack) which can be reused if the task
does not migrate to a different worker.

To solve this issue we implemented a continuation option in
LPEL where each thread has an optional continuation associated
with it. If this continuation is set, LPEL will run it in the thread’s
context, as soon as the previous execution finishes. The S-NET im-
plementation of spawning the next activation can then be achieved
by setting the continuation to the current function.

The result is that after every activation of an S-NET entity, con-
trol flow returns to the LPEL layer to start the task’s continuation.
At this point LPEL is in a position to check whether the task should
be migrated to another worker. If the task has to be migrated the
LPEL code can spawn a new thread on a different worker to execute
the continuation.

3.3 Synchronous vs asynchronous migration
Now that LPEL has gained the technical capability to migrate tasks
between worker, we have to think on how we decide when to
migrate a task and when not. An approach that immediately comes
to mind is to define a placement oracle and on each continuation
consult that oracle. This would be fairly simple, but would likewise
introduce a significant amount of overhead as soon as the oracle
requires a non-trivial amount of computation because every worker
has to do a blocking invocation of the placement oracle upon each
continuation of an S-NET task.

Rather than following the above synchronous approach, we de-
cided to make placement decisions asynchronously from task pro-
cessing. For this we extend the LPEL thread control structuer with a
next-worker field that indicates the worker on which the next invo-
cation should run. This means that LPEL checks whether the current
and next workers are the same, if so the continuation is invoked. If,
however, the next worker is different from the current, LPEL spawns
the continuation on the new worker and thus effectively migrates
the task.

3.4 Placement scheduler
The open question is still where, when and how the next-worker
field is updated. As a starting point we introduce the notion of a
placement scheduler. This is a conceptual task in the LPEL system
that periodically inspects tasks and determines whether they should
migrate on their next invocation. The placement scheduler is set up

so that it can use any arbitrary oracle to decide the new placement.
As a small starting experiment to test the migration code and
placement scheduler we implemented two very simple strategies
for placement. To accommodate these strategies we added optional
hooks to each scheduling event. These hooks update any strategy
specific state that is used by the placement scheduler to determine
placements.

3.5 Placement strategies
The first implemented strategy is random migration. After every
invocation a task is marked for migration with probability p. The
placement scheduler updates the next worker field of selected tasks
with a random worker. This strategy can then be used as a baseline
to see whether placement has any effect (positive or negative) at all,
in terms of performance gain or overhead introduced.

The second strategy does placement based on the waiting times
of tasks. That is, the time that a task is runnable, but not running.
The waiting time Tready is the sliding window average of the past
n run-suspend cycles. For every worker we maintain the average
µTready of the Tready of each task on that worker. A task is selected
for migration if its Tready is larger than the µTready of its worker.
The task is then migrated to the worker with the lowest µTready .
The goal of this strategy is to minimize the time a ready task
spends waiting to run, aiming at increasing the average utilization
of workers and balancing their loads.

4. Analysis
In this section we investigate the performance impact of task mi-
gration. Our first implementation attempt did not use scheduling
hooks to update the migration state of tasks. We benchmarked1 this
implementation using a domain-decomposition implementation of
raytracing [9]. The results of these benchmarks quickly showed that
the placement scheduler’s locking eliminated any scaling S-NET
had, as shown in Figure 3 and Figure 4.

After these disappointing results we redesigned the implemen-
tation of the placement scheduler to avoid unnecessary locking
and use atomic operations where synchronization between threads
could not be avoided. This new implementation reduced the over-
head created by the placement scheduler to an insignificant amount,
as illustrated by the graphs in Figure 5 and Figure 6. The scaling is
roughly identical between the runs with placement and those with-
out.

However, our goal was to improve the performance of S-NET
applications, which is not occurring in these benchmarks. The ray-
tracer, with its domain-decomposition implementation is not ideal
for testing our placement scheduler, as its workload is very static.
We proceeded to explore several other example S-NET applications
with various threshold to examine the performance impact of place-
ment on other workloads.

We selected three benchmarks with very different workloads.
Two of the applications were used as benchmarks in previous re-
search, an ant colony optimization program[1] and acoustic target

1 All experiments are done on a shared memory machine, a 12 core Intel(R)
L5640 2.27 GHz Xeon(R) CPU, with 24 Gigabytes of RAM.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 2 4 6 8 10 12

Ti
m

e
 i
n
 s

e
co

n
d
s

Number of workers

Comparison between different implementations

random, thr = 0.5
ready-time, thr = 0.9

old
pthread

Figure 3. Raytracing durations for different placement strategies.

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

1 2 4 6 8 10 12

S
p
e
e
d
u
p

Number of workers

Speedup

Random
Ready-time

Old

Figure 4. Raytracer scaling for different placement strategies.

FIXME

Figure 5. Benchmark runtimes for different placement strategies.

FIXME

Figure 6. Benchmark scaling for different placement strategies.

tracker using the MTI-STAP algorithm[8]. In addition to these we
used an example network generated by our automatic benchmark
generator. The results of these benchmarks are shown in Figure 7,
Figure 8 and Figure 9.

As shown in these graphs the placement

5. Conclusion
Acknowledgements
The work has been funded by the EU FP-7 project ADVANCE
(Asynchronous and Dynamic Virtualisation through performance
ANalysis to support Concurrency Engineering, project no. 248828).

References
[1] W. Cheng, F. Penczek, C. Grelck, R. Kirner, B. Scheuermann, and

A. Shafarenko. Modeling streams-based variants of ant colony op-
timisation for parallel systems. In HiPEAC Workshop on Feedback-
Directed Compiler Optimization for Multicore Architectures (FD-
COMA’12), Paris, France, pages 11–18, 2012.

[2] C. Grelck, J. Julku, and F. Penczek. Distributed s-net: Cluster and grid
computing without the hassle. In Cluster, Cloud and Grid Comput-
ing (CCGrid’12), 12th IEEE/ACM International Conference Ottawa,
Canada. IEEE Computer Society, 2012. to appear.

[3] C. Grelck and F. Penczek. Implementation Architecture and Multi-
threaded Runtime System of S-Net. In S. Scholz and O. Chitil, edi-
tors, Implementation and Application of Functional Languages, 20th
International Symposium, IFL’08, Hatfield, United Kingdom, Revised
Selected Papers, volume 5836 of Lecture Notes in Computer Science,
pages 60–79. Springer-Verlag, 2011.

[4] C. Grelck, S. Scholz, and A. Shafarenko. Asynchronous Stream Pro-
cessing with S-Net. International Journal of Parallel Programming,
38(1):38–67, 2010.

[5] C. Grelck and S.-B. Scholz. SAC: A functional array language for
efficient multithreaded execution. International Journal of Parallel
Programming, 34(4):383–427, 2006.

[6] C. Grelck, S.-B. Scholz, and A. Shafarenko. A Gentle Introduction
to S-Net: Typed Stream Processing and Declarative Coordination of
Asynchronous Components. Parallel Processing Letters, 18(2):221–
237, 2008.

[7] C. Grelck, Shafarenko, A. (eds):, F. Penczek, C. Grelck, H. Cai,
J. Julku, P. Hölzenspies, Scholz, S.B., and A. Shafarenko. S-Net
Language Report 2.0. Technical Report 499, University of Hertford-
shire, School of Computer Science, Hatfield, England, United King-
dom, 2010.

[8] F. Penczek, S. Herhut, C. Grelck, S.-B. Scholz, A. Shafarenko,
R. Barrière, and E. Lenormand. Parallel signal processing with S-Net.
Procedia Computer Science, 1(1):2079 – 2088, 2010. ICCS 2010.

[9] F. Penczek, S. Herhut, S.-B. Scholz, A. Shafarenko, J. Yang, C.-Y.
Chen, N. Bagherzadeh, and C. Grelck. Message Driven Program-
ming with S-Net: Methodology and Performance. Parallel Processing
Workshops, International Conference on, San Diego, USA, 0:405–412,
2010.

[10] D. Prokesch. A light-weight parallel execution layer for shared-
memory stream processing. Master’s thesis, Technical University of
Vienna, Vienna, Austria, 2011.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 5 10 15 20 25 30 35 40 45

Ti
m

e
in

 s
ec

on
ds

Number of workers

Ant colony simulation

Ready time placement
No placement

Random placement (10%)
Random placement (20%)
Random placement (30%)
Random placement (40%)
Random placement (50%)

Figure 7. Ant colony results.

 0

 50

 100

 150

 200

 250

 0 5 10 15 20 25 30 35 40 45

Ti
m

e
in

 s
ec

on
ds

Number of workers

MTI-STAP simulation

Ready time placement
No placement

Random placement (10%)
Random placement (20%)
Random placement (30%)
Random placement (40%)
Random placement (50%)

Figure 8. MTI-STAP results.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 5 10 15 20 25 30 35 40 45

Ti
m

e
in

 s
ec

on
ds

Number of workers

Generated benchmark

Ready time placement
No placement

Random placement (10%)
Random placement (20%)
Random placement (30%)
Random placement (40%)
Random placement (50%)

Figure 9. Generated benchmark results.

	Introduction
	S-Net: Design and Implementation
	S-Net language
	S-Net runtime system
	LPEL threading layer

	Task Migration
	Challenges
	Respawning
	Synchronous vs asynchronous migration
	Placement scheduler
	Placement strategies

	Analysis
	Conclusion

